AI应用 | 【AI+工业】LLM(大型语言模型)在工业领域中的十个应用

本文探讨了大型语言模型(LLM)如何在工业领域中革新,涉及数据处理、自动化、维护支持、质量优化、培训工具等多个方面,展示了LLM在提升效率、减少错误和增强安全性上的潜力。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Verdantix——

LLM(大型语言模型)在工业领域中的十个应用

**
**

图片

随着时间的推移,LLM(大型语言模型)的特性和能力逐渐为人们所熟知。它们展现了无与伦比的人类语言理解、出色的文本生成能力以及友好的对话指令跟随倾向。而像GPT-4和Claude等更为强大的LLM则展现出了对现实世界因果关系的深刻理解。据报道,GPT-4甚至采用了八个与GPT-3.5规模相当的LLM,通过混合专家(MoE)的方式进行配置。

尽管LLM在某些方面存在限制,如在过多上下文的情况下可能产生事实幻觉,以及在算术方面存在缺陷,但这些问题已通过精心设计的提示、RAG技术和专门的软件包装得到了解决,使LLM的行为更加接近理想的“代理”模式。OpenAI的首席执行官Sam Altman将这些进步比作“寒武纪爆炸”,意味着人工智能技术的迅猛发展和广泛应用潜力。

然而,这些技术突破也增加了监管机构采取行动的压力。例如,欧盟在2021年提出了AI法案,旨在规范人工智能的使用,确保其在法律、伦理和社会责任方面的合规性(参见Verdantix的报告《欧盟对人工智能监管发出鸣号》)。与此同时,工业领域的运营、维护和工艺安全主管也面临着巨大的挑战。他们需要优化生产过程、提高产量、减少排放,并满足日益严格的安全标准。

在快速的技术演进、日益严格的监管和社会担忧之间,存在着一定的紧张关系。然而,Verdantix在报告中指出了工业领域生成AI的十个高价值应用案例。这些案例展示了生成AI技术在解决工业领域实际问题方面的巨大潜力,为企业提供了优化生产、提高效率、减少成本并满足安全标准的新途径。

01

从庞大的数据集中提取相关的关键信息,以获得简明扼要的见解

Extracting relevant critical information from vast data sets for concise insights.

随着数字化在工业企业中的推广,由此产生的数据仓库和数据湖将存储从成千上万台物联网(IoT)设备上数十年的高频传感器测量数据,到数百万份检验报告、工单、扫描笔记和生产日志等各种数据。Salesforce Research公司的BLIP-2等功能强大的图像标注工具能够利用基于文本的数据丰富可视数据,而C3 AI和Cognite等公司的表格和文档解析工具则为LLM提供了多模态数据的可视性。通过使用检索系统向 LLM 提供文本块,操作员可以获得相关数据的对话式、基于真实情况的表述(见图5)。Cognite 的工业知识图谱为 LLM 提供了资产、流程、技术和人员之间的语义关系,以减少幻觉。基于 LLM 的信息检索系统可为操作员提供简明、相关的大局观见解,帮助他们发现低效和安全风险。

As digitization is rolled out across industrial enterprises, the resulting data warehouses and data lakes will store

everything from decades of high-frequency sensor measurements across thousands of Internet of Things (IoT)devices, to millions of inspection reports, work orders, scanned notes and production logs. Powerful image captioning tools, such as BLIP-2 by Salesforce Research, enable the enrichment of visual data with text-based metadata, while table and document parsing tools by firms such as C3 AI and Cognite offer LLMs visibility into multimodal data. By employing retrieval systems to serve text chunks to LLMs, operators are provided with conversational, grounded-in-truth representations of relevant data (see Figure 5). Cognite’s Industrial Knowledge Graph provides LLMs with semantic relationships between assets, processes, technologies and people, to reduce hallucinations. LLM-based information retrieval systems give operators concise, relevant insights for a big-picture view – helping them discover inefficiencies and safety risks.

图片

图5

02

通过自动化消除重复性行政工作

Eliminating repetitive administrative tasks through automation.

数字孪生、人工智能分析和资产管理软件等技术有助于实现工业设施多个流程的自动化,在 2022 年 Verdantix 全球企业卓越运营调查中,301 位受访者中有 87% 提到新技术的可用性是推动工厂运营数字化转型的最重要因素。2023 年 4 月,西门子宣布与微软合作,在微软团队(Microsoft Teams)中推出全新的 Teamcenter 应用程序,帮助车间工人解析和翻译自然语音,生成汇总报告,并将信息传递给相应的设计、工程或制造人员。

Technologies such as digital twins, AI analytics and asset management software help automate multiple p

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值