一、原理
对于长度为n的有序数组,一般我们采用遍历数组的方法找到数据的位置,这样做效率较低。如果我们能采用二分法的思想,逐步拆分成在很小数组内找解,就能节省很多时间。
对于这种方法,只需要使二分法的中间位置指针指向要找的数据,便可得到答案。
二、程序
使用while循环判断是否mid指向要查找的数据,维护low和high的指向即可。
三、实现
#include <cstdio>
int main() {
int n, number;
scanf("%d%d", &n, &number);
int data[n + 5];
int i;
for(i = 0; i < n; i++) {
scanf("%d", &data[i]);
}
int low = 0, high = n, mid = (low + high) / 2;
while(data[mid] != number) {
if(data[mid] > number) {
high = mid + 1;
mid = (low + high) / 2;
} else if(data[mid] < number) {
low = mid + 1;
mid = (low + high) / 2;
}
}
printf("%d\n", mid + 1);
return 0;
}
四、思考
本算法有没有优化空间?
参考:斐波那契查找(黄金分割法查找)(仅使用加减实现的二分查找) - 博客频道 - CSDN.NET