查找算法:二分法查找

一、原理

对于长度为n的有序数组,一般我们采用遍历数组的方法找到数据的位置,这样做效率较低。如果我们能采用二分法的思想,逐步拆分成在很小数组内找解,就能节省很多时间。
对于这种方法,只需要使二分法的中间位置指针指向要找的数据,便可得到答案。

二、程序

使用while循环判断是否mid指向要查找的数据,维护low和high的指向即可。

三、实现

#include <cstdio>

int main() {
    int n, number;
    scanf("%d%d", &n, &number);
    int data[n + 5];
    int i;
    for(i = 0; i < n; i++) {
        scanf("%d", &data[i]);
    }

    int low = 0, high = n, mid = (low + high) / 2;
    while(data[mid] != number) {
        if(data[mid] > number) {
            high = mid + 1;
            mid = (low + high) / 2;
        } else if(data[mid] < number) {
            low = mid + 1;
            mid = (low + high) / 2;
        }
    }

    printf("%d\n", mid + 1);
    return 0;
}

四、思考

本算法有没有优化空间?
参考:斐波那契查找(黄金分割法查找)(仅使用加减实现的二分查找) - 博客频道 - CSDN.NET

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值