- 博客(25)
- 收藏
- 关注
原创 迁移原Windows 7下字体至Arch Linux
老师留了一篇作文,写一篇作文介绍一些和数学相关的东西。掏出攒下的tex模板,打开ST3,编译时提示错误:少了一些字体。才想起有很多在原来win7上装好的字体没挪过来,还好硬盘还在,折腾一下:# mkdir /usr/share/fonts/WindowsFonts# cp PATH/Windows/Fonts/* /usr/share/fonts/WindowsFonts/ #这里的P...
2019-07-02 21:35:51 247
原创 安装Sublime Text 3,做一些基本配置
开始使用Arch & KDE Plasma的第4周,用Kate写东西的时候总有些不顺手,加上要写Markdown,之前Win7上用ST3很舒服,准备迁移一下.20190325之前已经准备了pamac,在AUR搜索sublime-text-3-imfix,一路确认安装,编辑器到手.从网上搞了个注册码,但只能在ST2上使用,不过并没有弹窗,出了顶栏会提示需要升级,直接忽略掉.安装pac...
2019-04-09 23:32:08 269
原创 高等代数 线性空间
#这是笔记,用来存档,没有自己的想法,也许内容还很trivial设VVV是一个数域F\Bbb{F}F上的非空集合,并且有映射:+:V×V→V+:V \times V \rightarrow V+:V×V→V,∘:F×V→V\circ:\Bbb{F} \times V \rightarrow V∘:F×V→V满足条件:1.∀α,β,γ∈V(α+β)+γ=α+(β+γ)\forall \alpha...
2019-02-26 18:45:25 802
原创 初等数论 3.2 离散对数
定义:设m∈Z+m\in\Z^+m∈Z+且有原根rrr,若a∈Z+a\in\Z^+a∈Z+满足(a,m)=1(a,m)=1(a,m)=1,使得同余式rx≡a(modm)1≤x≤ϕ(m)r^x\equiv a\pmod m \quad 1\le x \le \phi(m)rx≡a(modm)1≤x≤ϕ(m)成立的唯一的整数xxx称为aaa对模mmm的以rrr为底的指数(离散对数),记为indra\m...
2019-02-16 16:28:06 688
原创 初等数论 3.1原根
定义:若0≠a∈Z,n∈Z+0\neq a\in\Z,n\in\Z^+0̸=a∈Z,n∈Z+且(a,n)=1(a,n)=1(a,n)=1,满足ax≡1(modn)a^x\equiv 1\pmod nax≡1(modn)成立的最小正整数称为aaa模nnn的阶,记为ordna\mathrm{ord_n a}ordna.定理:若0≠a∈Z,x,n∈Z+0\neq a\in\Z,x,n\in\Z^+...
2019-02-14 18:00:08 527
原创 初等数论 2.7 乘性函数
定义:定义在所有正整数上的函数称为算术函数.定义:若算术函数对任意两个互素的正整数nnn和mmm,均有f(mn)=f(m)⋅f(n)f(mn)=f(m)\cdot f(n)f(mn)=f(m)⋅f(n),则称fff为乘性函数.若对∀m,n∈Z+\forall m,n\in\Z^+∀m,n∈Z+,均有f(mn)=f(m)⋅f(n)f(mn)=f(m)\cdot f(n)f(mn)=f(m)⋅f(n...
2019-02-10 20:43:15 1175
原创 初等数论 2.6 同余方程(2)
定理:Fermat小定理:设ppp是素数,若a∈Z+,p∤aa\in\Z^+,p\nmid aa∈Z+,p∤a则ap−1≡1(modp)a^{p-1}\equiv 1\pmod pap−1≡1(modp).定理:设ppp是素数,a∈Z+a\in\Z^+a∈Z+,则ap≡a(modp)a^p\equiv a\pmod pap≡a(modp).推论:若ppp是素数,a∈Z,p∤aa\in\Z,p\...
2019-02-10 17:25:55 305
原创 初等数论 2.5 简化剩余系
定义:设CCC是模mmm的一个剩余类,若∃a∈C\exists a\in C∃a∈C,使得(a,m)=1(a,m)=1(a,m)=1,则称CCC是模mmm的一个简化剩余类(reduced residue class).若CCC是mmm的一个简化剩余类,则CCC中每个数都与mmm互素.定义:对于给定的m∈Z+m\in\Z^+m∈Z+,称与mmm互素的剩余类的个数为Euler函数,记为ϕ(m)...
2019-02-09 19:07:29 4537
原创 初等数论 2.4 同余方程(1)
定义:设xxx是未知整数,形如ax≡b(modm)ax\equiv b\pmod max≡b(modm)的同余式称为一元线性同余方程.定理:设a,b∈Z,m∈Z+,(a,m)=da,b\in\Z,m\in\Z^+,(a,m)=da,b∈Z,m∈Z+,(a,m)=d若d∤bd\nmid bd∤b,则ax≡b(modm)ax\equiv b\pmod max≡b(modm)无解;若d∣bd\mid ...
2019-02-08 18:11:59 605
原创 初等数论 2.1 线性Diophantine方程
定义:设a1,a2,⋯ ,an,c∈Za_1,a_2,\cdots,a_n,c\in\Za1,a2,⋯,an,c∈Z,且a1a2⋯an≠0a_1a_2\cdots a_n\neq0a1a2⋯an̸=0,关于未知数x1,x2,⋯ ,xn∈Zx_1,x_2,\cdots,x_n\in\Zx1,x2,⋯,xn∈Z
2019-02-05 18:03:37 1299
原创 初等数论 1.6 最大公因数
定义:设a1,a2,d∈Za_1,a_2,d\in\Za1,a2,d∈Z,若d∣a1,d∣a2d\mid a_1,d\mid a_2d∣a1,d∣a2,则称ddd是a1a_1a1和a2a_2a2的公因数(common divisor).一般地,设a1,a2,⋯ ,an,d∈Za_1,a_2,\cdots,a_n,d\in\Za1,a2,⋯,an,d∈...
2019-02-02 16:54:21 747
原创 初等数论 1.2 和与积
定义:求和记号∑\sum∑:∑k=1nak=a1+a2+⋯+an\sum_{k=1}^{n}{a_k}=a_1+a_2+\cdots+a_nk=1∑nak=a1+a2+⋯+an其中kkk为求和下标(index of summation).定理:求和的一些性质:∑k=mnak\sum_{k=m}^{n}{a_k}∑k=mnak定义:求积记号∏\prod∏:∏k=1nak=a1a2⋯...
2019-01-29 10:40:14 337
原创 线性方程组与矩阵
通常,我们把有这种形式的方程:a1x1+a2x2+⋯+anxn=ba1x1+a2x2+⋯+anxn=b{ a }_{ 1 }{ x }_{ 1 }+{ a }_{ 2 }{ x }_{ 2 }+\cdots +{ a }_{ n }{ x }_{ n }=b叫做一个n元的线性方程.(这里我们只讨论复数域的情况) 而线性方程组(线性系统)是一个或多个含相同变量的线性方程的集合,例如⎧⎩⎨⎪⎪⎪⎪⎪...
2018-07-28 19:42:07 630
原创 开始之前
数据量急剧增长时,对于存储/传输数据的需求有两方面的解决方案:提高数据的存储/传输能力,或是对数据进行处理,使得数据本身更容易在现在的条件下完成存储/传输的任务.虽然前者的水平也在不断提高,但是跟不上数据的产生速度,这就需要我们对数据进行一些处理,使其能够更方便地传递. 两个个早期的例子:Morsecode. Morse注意到某些字符的出现频率比其它字符更高,为了减少发送信息需要的平均时间,他为...
2018-07-09 22:49:11 120
原创 开始之前
这一部分只是作为基础版本,通过考核足矣,但真正的代数精髓不会体现出来。我会在线性代数-拓展部分写出它的普遍与精彩之处。 为什么学线性代数?因为简单,因为重要。这是代数部分抽象的开始。 提到线性,大部分人在学线性代数之前只玩过线性方程组,线性规划,以及统计学里的线性相关。其中线性方程组的应用极其广泛,经济理论、密码学、物理工程…… 如果进入科研领域,你就会发现,只要不是线性的东西,我们基...
2018-05-06 19:48:01 197
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人