初等数论 2.5 简化剩余系

本文介绍了模m的简化剩余类和简化剩余系的概念,包括Euler函数ϕ(m)的定义,以及与模m互素的剩余类的性质。文中还探讨了简化剩余系的性质和构建,例如模m的简化剩余系的充要条件,以及它们如何在模乘法下保持不变。此外,阐述了Euler函数的性质,包括基本定理和推论,如ϕ(m1m2)=ϕ(m1)ϕ(m2),以及与素数和素因数分解的关系。最后,提到了著名的Wilson定理和Euler定理,这些都是数论中的重要定理。
摘要由CSDN通过智能技术生成

定义:设 C C C是模 m m m的一个剩余类,若 ∃ a ∈ C \exists a\in C aC,使得 ( a , m ) = 1 (a,m)=1 (a,m)=1,则称 C C C是模 m m m的一个简化剩余类(reduced residue class).

C C C m m m的一个简化剩余类,则 C C C中每个数都与 m m m互素.

定义:对于给定的 m ∈ Z + m\in\Z^+ mZ+,称与 m m m互素的剩余类的个数为Euler函数,记为 ϕ ( m ) \phi(m) ϕ(m).

p p p为素数,则 ϕ ( p ) = p − 1 \phi(p)=p-1 ϕ(p)=p1.

定义:设 m ∈ Z + m\in\Z^+ mZ+,从 ϕ ( m ) \phi(m) ϕ(m)个与 m m m互素的简化剩余类中各取一个数 x i ( i = 1 , ⋯   , m ) x_i(i=1,\cdots,m) xi(i=1,,m),构成一个集合 { x 1 , x 2 , ⋯   , x ϕ ( m ) } \displaystyle \{x_1,x_2,\cdots,x_{\phi(m)}\} { x1,x2,,xϕ(m)},称为模 m m m的一个简化剩余系(既约剩余系).

ϕ ( m ) \phi(m) ϕ(m)即为不超过 m m m且与 m m m互素的正整数个数.

对应地,可以得到模 m m m的最小非负简化剩余系,最小正简化剩余系,绝对最小简化剩余系.
定理: k k k个整数 a 1 , a 2 , ⋯   , a k a_1,a_2,\cdots,a_k a1,a2,,ak构成模 m m m的一个简化剩余系的充要条件:
1. k = ϕ ( m ) k=\phi(m) k=ϕ(m)
2.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值