定义:设 C C C是模 m m m的一个剩余类,若 ∃ a ∈ C \exists a\in C ∃a∈C,使得 ( a , m ) = 1 (a,m)=1 (a,m)=1,则称 C C C是模 m m m的一个简化剩余类(reduced residue class).
若 C C C是 m m m的一个简化剩余类,则 C C C中每个数都与 m m m互素.
定义:对于给定的 m ∈ Z + m\in\Z^+ m∈Z+,称与 m m m互素的剩余类的个数为Euler函数,记为 ϕ ( m ) \phi(m) ϕ(m).
若 p p p为素数,则 ϕ ( p ) = p − 1 \phi(p)=p-1 ϕ(p)=p−1.
定义:设 m ∈ Z + m\in\Z^+ m∈Z+,从 ϕ ( m ) \phi(m) ϕ(m)个与 m m m互素的简化剩余类中各取一个数 x i ( i = 1 , ⋯   , m ) x_i(i=1,\cdots,m) xi(i=1,⋯,m),构成一个集合 { x 1 , x 2 , ⋯   , x ϕ ( m ) } \displaystyle \{x_1,x_2,\cdots,x_{\phi(m)}\} { x1,x2,⋯,xϕ(m)},称为模 m m m的一个简化剩余系(既约剩余系).
ϕ ( m ) \phi(m) ϕ(m)即为不超过 m m m且与 m m m互素的正整数个数.
对应地,可以得到模 m m m的最小非负简化剩余系,最小正简化剩余系,绝对最小简化剩余系.
定理: k k k个整数 a 1 , a 2 , ⋯   , a k a_1,a_2,\cdots,a_k a1,a2,⋯,ak构成模 m m m的一个简化剩余系的充要条件:
1. k = ϕ ( m ) k=\phi(m) k=ϕ(m)
2.

本文介绍了模m的简化剩余类和简化剩余系的概念,包括Euler函数ϕ(m)的定义,以及与模m互素的剩余类的性质。文中还探讨了简化剩余系的性质和构建,例如模m的简化剩余系的充要条件,以及它们如何在模乘法下保持不变。此外,阐述了Euler函数的性质,包括基本定理和推论,如ϕ(m1m2)=ϕ(m1)ϕ(m2),以及与素数和素因数分解的关系。最后,提到了著名的Wilson定理和Euler定理,这些都是数论中的重要定理。
最低0.47元/天 解锁文章
7657

被折叠的 条评论
为什么被折叠?



