POJ 2774 Long Long Message 后缀数组模板题

http://poj.org/problem?id=2774

题意:给你两个字符串,问其中重叠的子串的最大长度;

做法:直接连起来,跑一个后缀数组,求height数组就完了,但不过注意zzzbcd cdbcdcd的情况所以中间加一个其他字符隔开。

#include<iostream>
#include<algorithm>
#include<stdio.h>
#include<string.h>
using namespace std;
const int N=1000010;
char s[N],ss[N];
int sa[N],x[N],y[N],c[N],n,m,height[N];
void Suffix()
{
    for(int i=0;i<m;i++) c[i]=0;
    for(int i=0;i<n;i++) c[x[i]=s[i]]++;
    for(int i=0;i<m;i++) c[i]+=c[i-1];
    for(int i=n-1;i>=0;i--) sa[--c[x[i]]]=i;
    for(int k=1;k<=n;k<<=1)
    {
        int p=0;
        for(int i=n-k;i<n;i++) y[p++]=i;
        for(int i=0;i<n;i++) if(sa[i]>=k) y[p++]=sa[i]-k;
        for(int i=0;i<m;i++) c[i]=0;
        for(int i=0;i<n;i++) c[x[y[i]]]++;
        for(int i=0;i<m;i++) c[i]+=c[i-1];
        for(int i=n-1;i>=0;i--) sa[--c[x[y[i]]]]=y[i];
        swap(x,y);
        p=1;x[sa[0]]=0;
        for(int i=1;i<n;i++)
            x[sa[i]]= y[sa[i]]==y[sa[i-1]]&&y[sa[i]+k]==y[sa[i-1]+k]?p-1:p++;
        if(p>=n) break;
        m=p;
    }
}
int rk[N];
void getheight()
{
    for(int i=0;i<n;i++) rk[sa[i]]=i;
    for(int i=0,k=0;i<n;i++)
    {
        if(rk[i])
        {
            if(k) --k;
            else k=0;
            int j=sa[rk[i]-1];
            while(s[i+k]==s[j+k])
                k++;
            height[rk[i]]=k;
        }
    }
}
int main()
{
    scanf("%s%s",s,ss);
    int l=strlen(s);
    s[l]=127,s[l+1]='\0';
    strcat(s,ss);
    n=strlen(s);
    s[n]=0,s[n+1]='\0';
    n=strlen(s);
    m=128;
    Suffix();
    getheight();
    int ans=0;
    for(int i=1;i<n;i++)
    {
        if(height[i]>ans)
        {
            if(sa[i-1]>=0&&sa[i-1]<l&&sa[i]>l)
                ans=height[i];
            if(sa[i]>=0&&sa[i]<l&&sa[i-1]>l)
                ans=height[i];
        }
    }
    printf("%d\n",ans);
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值