P4168 [Violet]蒲公英 分块

https://www.luogu.org/problemnew/show/P4168

题意很简单,就是求区间众数。可以用分块做

首先看数据范围比较大,先离散化。

首先这道题,他叫你强制在线。然后这道题范围40000-50000然后就吧我们的分块大法抬出来。

首先分块后对于区间[l,r]

1. l到第pos[a]块最后一个

2. 第pos[a]+1块到第pos[b]-1块

3. 第pos[b]块第一个到r

然后对于边缘的块可以暴力解决。那么对于中间的块呢,首先知道一个结论那么考虑集合b,那么mode(a∪b)∈mode(a)∪b

其中mode表示集合的众数,所以可以知道众数一定a的众数和b的集合中的,这个用反证法也很好证明,这里就不证明了,另外这个集合是多重集合,所以一个数可以出现多次。

所以结合上面只需要把边缘的每一个数,和中间的众数进行比较就可以了。

而且是多次询问,这种情况下,因此我们可以预处理一个数组;

p[i][j]:表示在第i到j个块中的众数离散化后的值。

我们在这里假设分块大小为T,用最爆力的方法枚举i和j,遍历块的大小,复杂的大概是:

O(\frac{n}{t}*\frac{n}{t}*t),当然可以适当优化一下。

然后把每一个数的位置记录下来,然后可以用二分,找到在一个区间出现的次数。这样把边缘和中间的数比较就可以得出答案。

复杂度考虑最坏的情况。

O(m*2*t*logn)

这里考虑m和n同阶。然后可以得出块的大小(\frac{n}{logn})^{\frac{1}{2}}/2左右,在洛谷上面如果直接sqrt(n)可能会t。大概开到sqrt(n)/6就可以了。

#include <bits/stdc++.h>
using namespace std;
const int N=1e5+10;
const int M=20;
typedef long long ll;

namespace io {
    const int SIZE = 1e7 + 10;
    char inbuff[SIZE];
    char *l, *r;
    inline void init() {
        l = inbuff;
        r = inbuff + fread(inbuff, 1, SIZE, stdin);
    }
    inline char gc() {
        if (l == r) init();
        return (l != r) ? *(l++) : EOF;
    }
    void read(int &x) {
        x = 0; char ch = gc();
        while (!isdigit(ch)) ch = gc();
        while (isdigit(ch)) x = x * 10 + ch - '0', ch = gc();
    }
} using io::read;

const ll mod=10007;
int n,m,q,t,id;
int a[N],pos[N],p[4010][4010];

int val[N],cnt[N],x[N];
vector<int>v[N];

void init(int k)
{
    memset(cnt,0,sizeof(cnt));
    int ans=0,mx=0;
    for(int i=(k-1)*t+1;i<=n;i++){
        cnt[a[i]]++;
        int j=pos[i];
        if(cnt[a[i]]>mx||(cnt[a[i]]==mx&&x[a[i]]<x[ans]))
            ans=a[i],mx=cnt[a[i]];
        p[k][j]=ans;
    }
}
int qpos(int l,int r,int k)
{
    int tt=upper_bound(v[k].begin(),v[k].end(),r)-lower_bound(v[k].begin(),v[k].end(),l);
    return tt;
}
int query(int l,int r)
{
    int ans,mx;
    ans=p[pos[l]+1][pos[r]-1];
    mx=qpos(l,r,ans);
    for(int i=l;i<=min(r,t*pos[l]);i++){
        int tt=qpos(l,r,a[i]);
        if(tt>mx||(tt==mx&&x[a[i]]<x[ans]))
            ans=a[i],mx=tt;
    }
    if(pos[l]!=pos[r]){
        for(int i=(pos[r]-1)*t+1;i<=r;i++){
            int tt=qpos(l,r,a[i]);
            if(tt>mx||(tt==mx&&x[a[i]]<x[ans]))
                ans=a[i],mx=tt;
        }
    }
    return ans;
}

int main()
{
    scanf("%d%d",&n,&q);t=sqrt(n)/6;
    for(int i=1;i<=n;i++){
        scanf("%d",&a[i]);
        x[i]=a[i];
    }
    sort(x+1,x+n+1);
    int len=unique(x+1,x+n+1)-x;
    for(int i=1;i<=n;i++){
        a[i]=lower_bound(x+1,x+len,a[i])-x;
        v[a[i]].push_back(i);
    }
    for(int i=1;i<=n;i++) pos[i]=(i-1)/t+1;
    for(int i=1;i<=pos[n];i++) init(i);
    int l,r,last=0;
    while(q--){
        scanf("%d%d",&l,&r);
        l=(l+last-1)%n+1;
        r=(r+last-1)%n+1;
        if(l>r) swap(l,r);
        printf("%d\n",last=x[query(l,r)]);
    }
    return 0;
}

同时我们可以考虑去除掉log 使块的大小在sqrt(n)左右。

s[i][j]:表示在前i个中j出现了几次。用于预处理复杂度也是O(\frac{n*n}{t})

#include <bits/stdc++.h>
using namespace std;
const int N=4e4+10;
const int M=20;
typedef long long ll;
const ll mod=10007;
int a[N],x[N],sum[210][40010];
int cnt[N],n,m,b,q,t,pos[N],vis[N];
vector<int>v[N];
struct node
{
    int num,s;
}p[210][210];
void init()
{
    for(int i=1;i<=b;i++){
        memset(cnt,0,sizeof(cnt));
        node tmp={0,0};
        for(int j=i;j<=b;j++){
            for(int k=(j-1)*t+1;k<=min(n,j*t);k++){
                cnt[a[k]]++;
                if(cnt[a[k]]>tmp.s){
                    tmp.num=a[k];
                    tmp.s=cnt[a[k]];
                }
                if(cnt[a[k]]==tmp.s){
                    tmp.num=min(tmp.num,a[k]);
                }
            }
            p[i][j]=tmp;
        }
    }
    for(int i=1;i<=b;i++){
        for(int j=1;j<=n;j++) sum[i][a[j]]=sum[i-1][a[j]];
        for(int j=(i-1)*t+1;j<=min(n,i*t);j++) sum[i][a[j]]++;
    }
}

int query(int l,int r)
{
    memset(cnt,0,sizeof(cnt));
    memset(vis,0,sizeof(vis));
    int ans=0;
    if(pos[r]-pos[l]<=1){
        for(int i=l;i<=r;i++){
            cnt[a[i]]++;
            if(cnt[a[i]]>cnt[ans]) ans=a[i];
            if(cnt[a[i]]==cnt[ans]) ans=min(ans,a[i]);
        }
        return ans;
    }
    for(int i=l;i<=min(n,pos[l]*t);i++) cnt[a[i]]++;
    for(int i=(pos[r]-1)*t+1;i<=r;i++) cnt[a[i]]++;
    int mxnum,mx=0;
    for(int j=l;j<=min(n,pos[l]*t);j++){
        if(!vis[a[j]]){
            vis[a[j]]=1;
            int val=cnt[a[j]]+sum[pos[r]-1][a[j]]-sum[pos[l]][a[j]];
            if(mx<val) mx=val,mxnum=a[j];
            else if(mx==val) mxnum=min(mxnum,a[j]);
        }
    }
    for(int j=(pos[r]-1)*t+1;j<=r;j++){
        if(!vis[a[j]]){
            vis[a[j]]=1;
            int val=cnt[a[j]]+sum[pos[r]-1][a[j]]-sum[pos[l]][a[j]];
            if(mx<val) mx=val,mxnum=a[j];
            else if(mx==val) mxnum=min(mxnum,a[j]);
        }
    }
    ans=p[pos[l]+1][pos[r]-1].num;
    if(mx>cnt[ans]+p[pos[l]+1][pos[r]-1].s) ans=mxnum;
    else if(mx==cnt[ans]+p[pos[l]+1][pos[r]-1].s) ans=min(mxnum,ans);
    return ans;
}

int main()
{
    ios::sync_with_stdio(false);
    cin.tie(0),cout.tie(0);
    cin>>n>>q;
    for(int i=1;i<=n;i++){
        cin>>a[i];
        x[i]=a[i];
    }
    sort(x+1,x+n+1);
    m=unique(x+1,x+n+1)-x;
    for(int i=1;i<=n;i++) a[i]=lower_bound(x+1,x+m,a[i])-x;
    t=sqrt(n);
    for(int i=1;i<=n;i++) pos[i]=(i-1)/t+1;
    b=(n-1)/t+1;
    init();
    int l,r,last=0;
    while(q--){
        cin>>l>>r;
        l=(l+last-1)%n+1;
        r=(r+last-1)%n+1;
        if(l>r) swap(l,r);
        last=x[query(l,r)];
        cout<<last<<endl;
    }
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值