在全球气候变化与生物多样性保护的交叉领域,物种分布模型(SDM)已成为解析生物地理格局、预测生态响应的重要工具。BIOMOD2作为R语言生态建模的旗舰级工具包,凭借其多算法集成建模、不确定性量化与空间显式预测三大核心优势,在《Nature Ecology & Evolution》等顶刊研究中被广泛采用。其独特价值在于:
-
集成学习框架:支持GLM、GAM、MaxEnt、随机森林等10+算法并行计算,通过委员会加权(Ensemble Modeling)显著提升预测稳健性
-
环境阈值解析:基于PCA-ENM方法量化物种生态位边界,精准识别关键限制因子
-
迁移预测能力:耦合CMIP6气候情景数据,实现跨时空尺度的分布区动态推演
BIOMOD2建模全流程解析
以青藏高原特有植物塔黄(Rheum nobile)为例
▶ 数据准备与预处理
r
library(biomod2)
# 加载物种分布数据(GBIF清洗后72个有效位点)
DataSpecies <- read.csv("Rheum_nobile_occ.csv")
# 导入19项生物气候变量(WorldClim 2.1, 分辨率1km²)
myExpl <- stack("wc2.1_30s_bio.tif")
# 环境变量共线性诊断(保留|r|<0.7的变量)
vif_result <- vifstep(myExpl, th=7)
myExpl <- exclude(myExpl, vif_result)
▶ 模型参数化与校准
r
# 定义模型配置(4种算法+交叉验证)
myBiomodOption <- BIOMOD_ModelingOptions(
GLM =list(type ='quadratic', interaction.level =1),
GBM =list(n.trees =2000),
RF =list(ntree =500),
MAXENT.Phillips =list(path_to_maxent.jar ="/maxent/")
)
# 启动并行计算(加速5倍)
myBiomodData <- BIOMOD_FormatingData(
resp.var = DataSpecies[,"Occurrence"],
expl.var = myExpl,
resp.xy = DataSpecies[,c("Longitude","Latitude")]
)
▶ 集成建模与评估
r
# 运行10次交叉验证
myBiomodModelOut <- BIOMOD_Modeling(
myBiomodData,
models =c('GLM','GBM','RF','MAXENT.Phillips'),
models.options = myBiomodOption,
NbRunEval =10,
DataSplit =80,
VarImport =10
)
# 构建委员会评估模型
myBiomodEM <- BIOMOD_EnsembleModeling(
modeling.output = myBiomodModelOut,
chosen.models ='all',
em.by ='all',
eval.metric =c('TSS','ROC'),
eval.metric.quality.threshold =c(0.7,0.8)
)
# 变量重要性排序(Bio15降水季节性最敏感)
var_importance <- get_variables_importance(myBiomodEM)
▶ 气候变化情景预测
r
# 加载SSP5-8.5情景数据(2070年)
futureClimate <- stack("CMIP6_SS585_2070.tif")
# 空间显式分布概率预测
myBiomodProj <- BIOMOD_Projection(
modeling.output = myBiomodModelOut,
new.env = futureClimate,
proj.name = 'SS585_2070',
binary.meth = 'TSS'
)
# 生成迁移轨迹热力图(图2)
plot(myBiomodProj, str.grep = 'EMca')
若想深入了解学习BIOMOD2 及机器学习方法的物种分布模拟技巧,推荐阅读:
基于R语言BIOMOD2 及机器学习方法的物种分布模拟与案例分析