BIOMOD2物种分布建模:从算法原理到气候变化响应预测-解析生物地理格局、预测生态响应的重要工具

在全球气候变化与生物多样性保护的交叉领域,物种分布模型(SDM)已成为解析生物地理格局、预测生态响应的重要工具。‌BIOMOD2‌作为R语言生态建模的旗舰级工具包,凭借其‌多算法集成建模、不确定性量化与空间显式预测‌三大核心优势,在《Nature Ecology & Evolution》等顶刊研究中被广泛采用。其独特价值在于:

  1. 集成学习框架‌:支持GLM、GAM、MaxEnt、随机森林等10+算法并行计算,通过委员会加权(Ensemble Modeling)显著提升预测稳健性

  2. 环境阈值解析‌:基于PCA-ENM方法量化物种生态位边界,精准识别关键限制因子

  3. 迁移预测能力‌:耦合CMIP6气候情景数据,实现跨时空尺度的分布区动态推演

BIOMOD2建模全流程解析
以青藏高原特有植物塔黄(Rheum nobile)为例

▶ 数据准备与预处理

r

library(biomod2)
# 加载物种分布数据(GBIF清洗后72个有效位点)
DataSpecies <- read.csv("Rheum_nobile_occ.csv")
# 导入19项生物气候变量(WorldClim 2.1, 分辨率1km²)
myExpl <- stack("wc2.1_30s_bio.tif")
# 环境变量共线性诊断(保留|r|<0.7的变量)
vif_result <- vifstep(myExpl, th=7)
myExpl <- exclude(myExpl, vif_result)

▶ 模型参数化与校准

r

# 定义模型配置(4种算法+交叉验证)
myBiomodOption <- BIOMOD_ModelingOptions(
  GLM =list(type ='quadratic', interaction.level =1),
  GBM =list(n.trees =2000),
  RF =list(ntree =500),
  MAXENT.Phillips =list(path_to_maxent.jar ="/maxent/")
)

# 启动并行计算(加速5倍)
myBiomodData <- BIOMOD_FormatingData(
  resp.var = DataSpecies[,"Occurrence"],
  expl.var = myExpl,
  resp.xy = DataSpecies[,c("Longitude","Latitude")]
)

▶ 集成建模与评估

r

# 运行10次交叉验证
myBiomodModelOut <- BIOMOD_Modeling(
  myBiomodData,
  models =c('GLM','GBM','RF','MAXENT.Phillips'),
  models.options = myBiomodOption,
  NbRunEval =10,
  DataSplit =80,
  VarImport =10
)

# 构建委员会评估模型
myBiomodEM <- BIOMOD_EnsembleModeling(
  modeling.output = myBiomodModelOut,
  chosen.models ='all',
  em.by ='all',
  eval.metric =c('TSS','ROC'),
  eval.metric.quality.threshold =c(0.7,0.8)
)

# 变量重要性排序(Bio15降水季节性最敏感)
var_importance <- get_variables_importance(myBiomodEM)

▶ 气候变化情景预测

r

# 加载SSP5-8.5情景数据(2070年)
futureClimate <- stack("CMIP6_SS585_2070.tif")

# 空间显式分布概率预测
myBiomodProj <- BIOMOD_Projection(
  modeling.output = myBiomodModelOut,
  new.env = futureClimate,
  proj.name = 'SS585_2070',
  binary.meth = 'TSS'
)

# 生成迁移轨迹热力图(图2)
plot(myBiomodProj, str.grep = 'EMca')

若想深入了解学习BIOMOD2 及机器学习方法的物种分布模拟技巧,推荐阅读:
基于R语言BIOMOD2 及机器学习方法的物种分布模拟与案例分析

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值