- 简介
快速排序算法是对冒泡排序的一种改进,它采用了一种分治的策略,通常称其为分治法。分治法的思想是:将原问题分解为若干个规模更小的但结构与原问题相似的子问题。递归地解这些子问题,然后将这些子问题的解组合为原问题的解。
即通过一趟排序将进行排序的数据分割成独立的两部分,其中一部分的数据比另一部分的数据都大,然后再按此访求对这两部分数据分别进行快速排序,这样循环往复,直到进行排序的数据按一定的顺序排列。
快速排序是C.R.A.Hoare于1962年提出的一种划分交换排序。它采用了一种分治的策略,通常称其为分治法(Divide-and-ConquerMethod)。
该方法的基本思想是:
1)先从数列中取出一个数作为基准数。
2) 分区过程,将比这个数大的数全放到它的右边,小于或等于它的数全放到它的左边。
3) 再对左右区间重复第二步,直到各区间只有一个数。
虽然快速排序称为分治法,但分治法这三个字显然无法很好的概括快速排序的全部步骤。因此我的对快速排序作了进一步的说明:挖坑填数+分治法: - 理解快速排序算法的例子
以一个数组作为示例,取区间第一个数为基准数0
1
2
3
4
5
6
7
8
9
72
6
57
88
60
42
83
73
48
85
初始时,i = 0; j = 9; X = a[i] = 72
由于已经将a[0]中的数保存到X中,可以理解成在数组a[0]上挖了个坑,可以将其它数据填充到这来。
从j开始向前找一个比X小或等于X的数。当j=8,符合条件,将a[8]挖出再填到上一个坑a[0]中。a[0]=a[8]; i++; 这样一个坑a[0]就被搞定了,但又形成了一个新坑a[8],这怎么办了?简单,再找数字来填a[8]这个坑。这次从i开始向后找一个大于X的数,当i=3,符合条件,将a[3]挖出再填到上一个坑中a[8]=a[3]; j--;
数组变为:0
1
2
3
4
5
6
7
8
9
48
6
57
88
60
42
83
73
88
85
i = 3; j = 7; X=72
再重复上面的步骤,先从后向前找,再从前向后找。
从j开始向前找,当j=5,符合条件,将a[5]挖出填到上一个坑中,a[3] = a[5]; i++;
从i开始向后找,当i=5时,由于i==j退出。
此时,i = j = 5,而a[5]刚好又是上次挖的坑,因此将X填入a[5]。
可以看出a[5]前面的数字都小于它,a[5]后面的数字都大于它。因此再对a[0…4]和a[6…9]这二个子区间重复上述步骤就可以了。
对挖坑填数进行总结
1.i =L; j = R; 将基准数挖出形成第一个坑a[i]。
2.j--由后向前找比它小的数,找到后挖出此数填前一个坑a[i]中。
3.i++由前向后找比它大的数,找到后也挖出此数填到前一个坑a[j]中。
4.再重复执行2,3二步,直到i==j,将基准数填入a[i]中。
照着这个总结很容易实现挖坑填数的代码:
- 代码实现
package com.iamp.admin.test; import java.util.Arrays; public class QuikShort { public static void main(String[] args) { int[] arr = { 49, 38, 65, 97, 23, 22, 76, 1, 5, 8, 2, 0, -1, 22 }; quickSort(arr, 0, arr.length - 1); System.out.println("排序后:"+ Arrays.toString(arr)); } /*** * 快速排序: * * @param s:需要排序的数组 * @param l:开始的数组下标 * @param r:数组最大的下标 */ public static void quickSort(int s[], int l, int r) { if (l < r) { //定义i为下标0,j为数组最大下标,x为基准数 int i = l, j = r, x = s[l]; while (i < j) { while(i < j && s[j] >= x){// 从右向左找第一个小于x的数 j--;//如果➡右指针的数比坑里的数大,那就不交换,直接继续移动寻找 } if(i < j){//找到了一个arr[j]比坑小,或者说i等于j啦,跳出了while循环 s[i] = s[j];//这样,j这边就有一个坑,需要左指针移动,找一个比坑的数大的填进来 i++; } while(i < j && s[i] < x) {//从左向右找第一个大于等于x的数 i++; } if(i < j){//将i填入j后,i这里就是一个新的坑 s[j] = s[i]; j--;//需要移动j来填 } } s[i] = x; quickSort(s, l, i - 1); // 递归调用 quickSort(s, i + 1, r); } } }
程序运行结果:
排序后:[-1, 0, 1, 2, 5, 8, 22, 22, 23, 38, 49, 65, 76, 97]
- 性能测试:
package com.iamp.admin.test; import java.text.SimpleDateFormat; import java.util.Arrays; import java.util.Date; public class QuikShort { public static void main(String[] args) { // int[] arr = { 49, 38, 65, 97, 23, 22, 76, 1, 5, 8, 2, 0, -1, 22 }; // quickSort(arr, 0, arr.length - 1); // System.out.println("排序后:"+ Arrays.toString(arr)); // 创建要给80000个的随机的数组 int[] arr = new int[8000000]; for (int i = 0; i < 8000000; i++) { arr[i] = (int) (Math.random() * 8000000); // 生成一个[0, 8000000) 数 } System.out.println("排序前"); Date date1 = new Date(); SimpleDateFormat simpleDateFormat = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss"); String date1Str = simpleDateFormat.format(date1); System.out.println("排序前的时间是=" + date1Str); quickSort(arr, 0, arr.length - 1); Date data2 = new Date(); String date2Str = simpleDateFormat.format(data2); System.out.println("排序前的时间是=" + date2Str); } /*** * 快速排序: * * @param s:需要排序的数组 * @param l:开始的数组下标 * @param r:数组最大的下标 */ public static void quickSort(int s[], int l, int r) { if (l < r) { //定义i为下标0,j为数组最大下标,x为基准数 int i = l, j = r, x = s[l]; while (i < j) { while(i < j && s[j] >= x){// 从右向左找第一个小于x的数 j--;//如果➡右指针的数比坑里的数大,那就不交换,直接继续移动寻找 } if(i < j){//找到了一个arr[j]比坑小,或者说i等于j啦,跳出了while循环 s[i] = s[j];//这样,j这边就有一个坑,需要左指针移动,找一个比坑的数大的填进来 i++; } while(i < j && s[i] < x) {//从左向右找第一个大于等于x的数 i++; } if(i < j){//将i填入j后,i这里就是一个新的坑 s[j] = s[i]; j--;//需要移动j来填 } } s[i] = x; quickSort(s, l, i - 1); // 递归调用 quickSort(s, i + 1, r); } } }
运行结果:数组长度为八百万的时候,排序时间约为1秒:
转载于:http://blog.csdn.net/morewindows/article/details/6684558
排序算法之快速排序
最新推荐文章于 2021-07-27 06:45:20 发布