迷宫问题
定义一个二维数组:
int maze[5][5] = {
0, 1, 0, 0, 0,
0, 1, 0, 1, 0,
0, 0, 0, 0, 0,
0, 1, 1, 1, 0,
0, 0, 0, 1, 0,
};
它表示一个迷宫,其中的1表示墙壁,0表示可以走的路,只能横着走或竖着走,不能斜着走,要求编程序找出从左上角到右下角的最短路线
Input
一个5 × 5的二维数组,表示一个迷宫。数据保证有唯一解。
Output
左上角到右下角的最短路径,格式如样例所示。
Sample Input
0 1 0 0 0
0 1 0 1 0
0 0 0 0 0
0 1 1 1 0
0 0 0 1 0
Sample Output
(0, 0)
(1, 0)
(2, 0)
(2, 1)
(2, 2)
(2, 3)
(2, 4)
(3, 4)
(4, 4)
思路:
- BFS
这个题目要求的是最短路线,首选BFS,因为BFS的主要思想就是并行操作,即同一时刻可以进行多种操作,并且遇到的第一个解就是最短路线,以这题为例,由于可以横着走或者竖着走,那么在每一个点都有四种走法——上下左右(注意迷宫的边界),而通过队列可以实现BFS的这种并行操作(因为队列具有先进先出的特点)。 - BFS过程简化图:
- 将起点1加入队列里:{1}
- 将1从队列中拿出,由状态1可以转移到状态2,3,此时队列为{2,3}
- 将状态2拿出,状态2可转移到状态4,队列{4,3}
- 将状态3拿出,状态3可转移到状态5,即终点,队列{4,5}
- 由于4比5先进入队列,因此此时先被拿出的是4,接着队列情况为{5,5}
- 此时可以将第二个5拿出,即遇到的第一个解,这个5是由状态3转移而来的,因此,有最短路线。
路径的记录
首先,路径的每一个结点都有基本属性:点坐标(x,y),因此可以使用结构体来创建结点,其次,由于除起点外的其他所有点都是由上一个点转移而来的,因此我们称这个“上一个点”为父结点,为了使每条路线的每一个结点之间都能被连接在一起,我们要在结构体里加入第三个成员:父结点,这第三个成员可以通过pair来创建,这样就可以使得每条路线的结点被连接在一起,最后,通过数组1来存放每个结点,再通过父节点找出最短路线的每个结点并存放在数组2