AA - 二叉树的基本操作代码

#include <iostream>
#include <bits/stdc++.h>

using namespace std;

char pre[55],mid[55],post[55];
int cnt=0;
typedef struct node
{
    char data;
    node *l,*r;
}Tree;

//根据已知先序遍历建立二叉树(带空结点)
Tree* buildtree_pre()
{
    if(pre[cnt]==',')
    {
        cnt++;
        return NULL;
    }

    Tree *root = new Tree;
    root->data=pre[cnt++];
    root->l=buildtree_pre();
    root->r=buildtree_pre();
    return root;
}

//根据先序遍历和中序遍历建立二叉树
Tree* buildtree_pre_mid(int len,char pre[],char mid[])
{
    if(!len)
        return NULL;
    Tree *root = new Tree;
    root->data=pre[0];
    int i;
    for(i=0;i<len;i++)
    {
        if(mid[i]==pre[0])
            break;
    }
    root->l=buildtree_pre_mid(i,pre+1,mid);
    root->r=buildtree_pre_mid(len-i-1,pre+i+1,mid+i+1);
    //len-i-1:总长度-左子树-根,是右子树的起点
    return root;
}

//根据中序遍历和后序遍历建立二叉树
Tree* buildtree_mid_post(int len,char mid[],char post[])
{
    if(!len)
        return NULL;
    Tree *root = new Tree;
    root->data=post[len-1];
    int i;
    for(i=0;i<len;i++)
    {
        if(mid[i]==post[len-1])
            break;
    }
    root->l=buildtree_mid_post(i,mid,post);
    root->r=buildtree_mid_post(len-i-1,mid+i+1,post+i);
    return root;
}

//先序遍历
void pre_Travel(Tree *root)
{
    if(root)
    {
        cout<<root->data;
        pre_Travel(root->l);
        pre_Travel(root->r);
    }
}

//中序遍历
void mid_Travel(Tree *root)
{
    if(root)
    {
        mid_Travel(root->l);
        cout<<root->data;
        mid_Travel(root->r);
    }
}

//后序遍历
void post_Travel(Tree *root)
{
    if(root)
    {
        post_Travel(root->l);
        post_Travel(root->r);
        cout<<root->data;
    }
}

//层序遍历
void Sequence_Travel(Tree *root)
{
    queue<Tree *> t;
    t.push(root);
    while(!t.empty())
    {
        root=t.front();
        t.pop();
        if(root)
        {
            cout<<root->data;
            t.push(root->l);
            t.push(root->r);
        }
    }
}

//二叉树的深度
int Deep_Tree(Tree *root)
{
    int sum=0,dl,dr;
    if(root)
    {
        dl=Deep_Tree(root->l);
        dr=Deep_Tree(root->r);
        sum=1+(dl>dr ? dl:dr);
    }
    return sum;
}

//叶子数目
int Leave_Sum(Tree *root)
{
    if(!root)
        return 0;
    if(!root->l && !root->r)
        return 1;
    else
        return Leave_Sum(root->l) + Leave_Sum(root->r);
}

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值