Description
有一个地下迷宫,它的通道都是直的,而通道所有交叉点(包括通道的端点)上都有一盏灯和一个开关;请问如何从某个起点开始在迷宫中点亮所有的灯并回到起点?
Input
连续T组数据输入,每组数据第一行给出三个正整数,分别表示地下迷宫的结点数N(1 < N <= 1000)、边数M(M <= 3000)和起始结点编号S,随后M行对应M条边,每行给出一对正整数,表示一条边相关联的两个顶点的编号。
Output
若可以点亮所有结点的灯,则输出从S开始并以S结束的序列,序列中相邻的顶点一定有边,否则只输出部分点亮的灯的结点序列,最后输出0,表示此迷宫不是连通图。
访问顶点时约定以编号小的结点优先的次序访问,点亮所有可以点亮的灯后,以原路返回的方式回到起点。
Sample
Input
1
6 8 1
1 2
2 3
3 4
4 5
5 6
6 4
3 6
1 5
Output
1 2 3 4 5 6 5 4 3 2 1
#include <iostream>
#include <bits/stdc++.h>
using namespace std;
bool Map[1005][1005],vis[1005];
int path[2010];
int n,m,cnt;
void DFS(int x)
{
vis[x] = true;
path[cnt++] = x;
for(int i=1;i<=n;i++)
{
if(!vis[i] && Map[x][i])
{
DFS(i);
//原路返回
path[cnt++] = x;
}
}
}
int main()
{
ios::sync_with_stdio(false);
int T,start,u,v;
cin>>T;
while(T--)
{
memset(Map,false,sizeof(Map));
memset(vis,false,sizeof(vis));
cnt = 0;
cin>>n>>m>>start;
for(int i=0;i<m;i++)
{
cin>>u>>v;
Map[u][v] = Map[v][u] = true;
}
DFS(start);
for(int i=0;i<cnt;i++)
{
if(!i)
cout<<path[i];
else
cout<<" "<<path[i];
}
if(cnt != n*2-1)
cout<<" "<<0;
cout<<endl;
}
return 0;
}