设计函数求一元多项式的导数。(注: x n x^n xn( n n n为整数)的一阶导数为 n x n − 1 nx^{n−1} nxn−1。)
输入格式:
以指数递降方式输入多项式非零项系数和指数(绝对值均为不超过 1000 的整数)。数字间以空格分隔。
输出格式:
以与输入相同的格式输出导数多项式非零项的系数和指数。数字间以空格分隔,但结尾不能有多余空格。注意“零多项式”的指数和系数都是 0,但是表示为 0 0
。
输入样例:
3 4 -5 2 6 1 -2 0
输出样例:
12 3 -10 1 6 0
解题思路:
当输入的指数 e x p o n expon expon 不为0时,按求导定义输出系数 c o e f f ∗ e x p o n coeff*expon coeff∗expon 和指数 e x p o n − 1 expon-1 expon−1
N o t e Note Note: 第一对 e x p o n expon expon 为0时,则输出 0 0 0 0 0 0
答案代码:
#include <iostream>
using namespace std;
int main() {
int coeff = 0, expon = 0;
cin >> coeff >> expon;
if (expon == 0) {
cout << "0 0" << endl;
return 0;
}
else
cout << coeff*expon << " " << expon-1;
while (cin >> coeff >> expon) {
if (expon != 0)
cout << " " << coeff*expon << " " << expon-1;
}
return 0;
}