微积分
普林斯顿微积分读本
微积分同步练习与模拟试题
SEAN JIN
这个作者很懒,什么都没留下…
展开
-
【证明题】(二)基本定理和不等式
可导 →\to→ 费马 →\to→ 罗尔 {拉氏构造原函数柯西交叉原函数\begin{cases}拉氏 & & {构造原函数} \\柯西 & & {交叉原函数}\end{cases}{拉氏柯西构造原函数交叉原函数费马引理:罗尔定理:拉格朗日:柯西定理:介值 →\to→ 积分中值介值:介质 →\to→ 积分中值积分中值:拉格朗日 →\to→ 积分中值推广积分中值推广:...原创 2020-08-19 22:50:22 · 1140 阅读 · 1 评论 -
【证明题】(一)微分中值定理
单中值证明 ∃ϵ\exist \epsilon∃ϵ,f(n)(ϵ)=0f^{(n)}(\epsilon)=0f(n)(ϵ)=0多次罗尔定理:f(a)=f(b)=f(c)→f′′(ϵ)=0f(a)=f(b)=f(c) \to f^{''}(\epsilon)=0f(a)=f(b)=f(c)→f′′(ϵ)=0结论仅含 ϵ\epsilonϵ原函数构造法:凑微分法分组法:结论含 ϵ,a,b\epsilon, a, bϵ,a,bϵ\epsilonϵ 与 a,ba原创 2020-08-12 15:51:36 · 4327 阅读 · 1 评论 -
【计算题】(六)微分方程和无穷级数
微分算子法快速求特解f(x)=ekxf(x)=e^{kx}f(x)=ekx — 见 DDD 换 kkk求 y′′−4y′+3y=2e2xy^{''}-4y^{'}+3y=2e^{2x}y′′−4y′+3y=2e2x 特解解: y∗=1D2−4D+32e2x=−2e2xy^{*}=\frac{1}{D^{2}-4D+3}2e^{2x}=-2e^{2x}y∗=D2−4D+312e2x=−2e2x求 y′′+2y′−3y=e−3xy^{''}+2y^{'}-3y=e^{-3x}y′′+2y′−3y原创 2020-09-29 00:07:19 · 1342 阅读 · 0 评论 -
【计算题】(五)多元函数微积分学
目录极限极限证明二重极限:x=rcosθ,y=rsinθx=r\cos \theta,y=r\sin \thetax=rcosθ,y=rsinθ原创 2020-07-04 18:20:57 · 4172 阅读 · 0 评论 -
【计算题】(四)不定积分和定积分
目录题型一 不定积分题型一 不定积分间断点是函数的未定义点,以左右极限是否存在可分为第一类和第二类间断点。第一类间断点:可去间断点( lim−=lim+\lim-=\lim+lim−=lim+)、跳跃间断点(lim−≠lim+\lim-≠\lim+lim−=lim+)第二类间断点:无穷间断点( lim=∞\lim = ∞lim=∞)、震荡间断点( limDNE\lim DNElimDNE)...原创 2020-06-28 19:33:34 · 1932 阅读 · 0 评论 -
【计算题】(三)连续与导数
目录题型一 连续与间断题型一 连续与间断间断点是函数的未定义点,以左右极限是否存在可分为第一类和第二类间断点。第一类间断点:可去间断点( lim−=lim+\lim-=\lim+lim−=lim+)、跳跃间断点(lim−≠lim+\lim-≠\lim+lim−=lim+)第二类间断点:无穷间断点( lim=∞\lim = ∞lim=∞)、震荡间断点( limDNE\lim DNElimDNE)已知 f(x)=x2−x∣x∣(x2−1)f(x)=\frac{x^2-x}{|x|(原创 2020-06-15 20:16:33 · 1097 阅读 · 0 评论 -
【计算题】(二)极限
目录题型一 求函数极限题型二 求数列极限题型三 极限存在性题型一 求函数极限熟练掌握四则运算法则、因式分解,简单的极限可以配合以下类似应激反应的操作解出或化简:分式±分式通分、√分子分母乘共轭、|□| e底双侧极限分式±分式通分:limx→1(1x−1+x−4x2−1)=limx→1x2+2x−3(x−1)(x2+x+1)=limx→1(x−1)(x+3)(x−1)(x2+x+1)=limx→1x+3x2+x+1=43\lim_{x \to 1}(\frac{1}{x-1}+\fra原创 2020-06-14 02:43:39 · 2259 阅读 · 0 评论 -
【计算题】(一)函数
目录题型一 求函数定义域1. 初等函数定义域2. 复合函数定义域3. 反函数定义域题型二 求函数表达式1. 初等函数表达式2. 反函数表达式3. 复合函数表达式题型一 求函数定义域1. 初等函数定义域例:求函数 f(x)=log10(x+8)26−2x(x−2)(x+19)f(x) = \frac{log_{10}(x+8)\sqrt{26-2x}}{(x-2)(x+19)}f(x)=(x−2)(x+19)log10(x+8)26−2x 的定义域解:(1) 分母不为 000: x≠2x ≠原创 2020-05-12 17:20:05 · 1976 阅读 · 0 评论 -
【知识点】(六)微分方程和无穷级数
目录微分方程1. 一阶微分2. 一阶线性3. 二阶可降阶微分4. 二阶线性微分5. 微分算子法快速求特解微分方程1. 一阶微分可分离变量:dydx=f(x)g(y)→∫dyg(y)=∫f(x)dx\frac{dy}{dx} = f(x)g(y) \to \int \frac{dy}{g(y)} =\int f(x)dxdxdy=f(x)g(y)→∫g(y)dy=∫f(x)dx齐次方程:dydx=ϕ(yx)→令u=yx,即y=xu,则dydx=u+xdudx,回代再分离变量积分\frac{原创 2020-07-15 19:54:13 · 1284 阅读 · 0 评论 -
【知识点】(五)多元函数微积分学
目录多元微分1. 极限和连续2. 偏导数3. 全微分多元微分1. 极限和连续极限:设函数 z=f(x,y)z=f(x,y)z=f(x,y) 在去心邻域 DDD 有定义,M0(x0,y0)M_0(x_0, y_0)M0(x0,y0) 是 DDD 的内点或边界点,M(x,y)∈DM(x,y) \in DM(x,y)∈D,lim(x,y)→(x0,y0)f(x,y)=A<=>∀ϵ>0,∃σ>0,0<∣MM0∣=(x−x0)2+(y−y0)2<σ,有∣f(x,y)原创 2020-07-03 22:28:00 · 1898 阅读 · 0 评论 -
【知识点】(四)不定积分和定积分
目录不定积分1. 概念和性质2. 基本公式3. 凑微分法不定积分1. 概念和性质概念:设 F(x)F(x)F(x) 时 f(x)f(x)f(x) 的一个原函数,则称 f(x)f(x)f(x) 的所有原函数 F(x)+CF(x)+CF(x)+C 为 f(x)f(x)f(x) 的不定积分,记为 ∫f(x)dx\int f(x)dx∫f(x)dx,即 ∫f(x)dx=F(x)+C\int f(x)dx=F(x)+C∫f(x)dx=F(x)+C性质:ddx∫f(x)dx=f(x),∫df(x)=∫f′(x原创 2020-06-24 22:54:18 · 2149 阅读 · 0 评论 -
【知识点】(三)连续与导数
目录连续与间断1.3. 垂直渐近线和水平渐近线5. 极限基本类型小结导数与微分连续与间断1.间断点:函数的未定义点,以左右极限是否存在可分为第一类和第二类间断点。(1) 第一类间断点:可去间断点( lim−=lim+\lim-=\lim+lim−=lim+)、跳跃间断点(lim−≠lim+\lim-≠\lim+lim−=lim+)(1) 第二类间断点:无穷间断点( lim=∞\lim = ∞lim=∞)、震荡间断点( limDNE\lim DNElimDNE)3. 垂直渐近线和水原创 2020-06-15 18:23:23 · 2723 阅读 · 0 评论 -
【知识点】(二)极限
目录极限导论1. 极限:基本思想2. 何时不存在极限3. 垂直渐近线和水平渐近线4. 三明治定理5. 极限基本类型小结函数极限求解1. 多项式极限2. 极限定义求极限3. 不定式极限极限导论基本初等函数的图像是一条连续光滑的曲线,但当函数某点 aaa 未定义时,若要探讨函数在该点的函数值就需要引入工具 — 极限。1. 极限:基本思想极限:描述了函数在一个未定义点 aaa 附近的行为,即当 xxx 接近于aaa 时,f(x)f(x)f(x) 的值就会极度接近 LLL。limx→af(x)=L<原创 2020-05-24 22:11:44 · 1446 阅读 · 0 评论 -
【知识点】(一)函数
函数函数 fff:对象转化规则。 \quad f(x)f(x)f(x):函数 fff 应用于对象 xxx \quad 区间表示法: [a,b][a,b][a,b]垂线检验函数如果存在落在 xxx 轴的垂线和图像相交多于一次,那么该图像不是函数图像。求定义域(1) 分母不为 000;(2) 负数不能取平方根; (3) 负数和零不能取对数例: f(x)=log10(x+8)26−2x(x−2)(x+19)f(x) = \frac{log_{10}(x+8)\sqrt{26-2x}}{(x-2原创 2020-05-10 17:48:44 · 2044 阅读 · 0 评论