二分图带权匹配(KM算法)

模板题一

一切尽在代码中

#include<bits/stdc++.h>

using namespace std;

const int maxn = 55;
const int inf = 1 << 30;
const int64_t mod = 1e9 + 7;
int w[maxn][maxn];
int lx[maxn], ly[maxn];
int linky[maxn], linkx[maxn];
bool visx[maxn], visy[maxn];
int slack[maxn];

int n, m;

bool Find(int x)//匈牙利算法求是否有合法匹配点
{
    visx[x] = true;
    for(int y = 0; y < m; y++)
    {
        if(visy[y]) continue;
        int t = lx[x] + ly[y] - w[x][y];

        if(!t)
        {
            visy[y] = true;
            if(linky[y] == -1 || Find(linky[y]))
            {
                linky[y] = x;
                linkx[x] = y;
                return true;
            }
        }
        else
            slack[y] = min(slack[y], t);
    }
    return false;
}
int KM()
{
    memset(linky, -1, sizeof(linky));
    memset(ly, 0, sizeof(ly));//初始时所有都在权值都在lx
    for(int v = 0; v < n; v++)//逐步增大二分子图
    {
        for(int j = 0; j < m; j++) slack[j] = inf;

        while(true)
        {
            memset(visx, 0, sizeof(visx));
            memset(visy, 0, sizeof(visy));
            if(Find(v))
                break;

            int d = inf;
            for(int i = 0; i < m; i++)
            {
                if(!visy[i])
                {
                    d = min(d, slack[i]); //算法贪心性质这里体现
                }
            }
            if(d == inf) return -1;
            for(int i = 0; i < n; i++)
            {
                if(visx[i])
                {
                    lx[i] -= d;
                }
            }
            for(int i = 0; i < m; i++)
            {
                if(visy[i])
                    ly[i] += d;
                else
                    slack[i] -= d;//在这个while循环中是叠加的,所以后面的slack要减去当前d
            }
        }
    }
    int res = 0;
    for(int i = 0; i < m; i++)
    {
        //cout << linkx[i] << " " << linky[i] << endl;
        if(linky[i] != -1) res += w[linky[i]][i];
    }
    return res;
}
int main()
{
    ios_base::sync_with_stdio(0);
    cin.tie(0);

    int P[maxn][maxn], Q[maxn][maxn];

    cin >> n;
    for(int i = 0; i < n; i++)
    {
        for(int j = 0; j < n; j++)
        {
            cin >> P[i][j];
        }
    }
    for(int i = 0; i < n; i++)
    {
        for(int j = 0; j < n; j++)
        {
            cin >> Q[i][j];
        }
    }
    m = n;
    for(int i = 0; i < n; i++)
    {
        lx[i] = -inf;
        for(int j = 0; j < m; j++)
        {
            lx[i] = max(lx[i], w[i][j] = P[i][j] * Q[j][i]);//初始时lx[i]为i连的最大边权
        }
        //cout << lx[i] << endl;
    }
    cout << KM() << endl;

    return 0;
}

模板题二

#include<bits/stdc++.h>

using namespace std;

const int maxn = 305;
const int inf = 1 << 30;
const int64_t mod = 1e9 + 7;
int w[maxn][maxn];
int lx[maxn], ly[maxn];
int linky[maxn], linkx[maxn];
bool visx[maxn], visy[maxn];
int slack[maxn];

int n, m;

bool Find(int x)//匈牙利算法求是否有合法匹配点
{
    visx[x] = true;
    for(int y = 0; y < m; y++)
    {
        if(visy[y]) continue;
        int t = lx[x] + ly[y] - w[x][y];

        if(!t)
        {
            visy[y] = true;
            if(linky[y] == -1 || Find(linky[y]))
            {
                linky[y] = x;
                linkx[x] = y;
                return true;
            }
        }
        else
            slack[y] = min(slack[y], t);
    }
    return false;
}
int KM()
{
    memset(linky, -1, sizeof(linky));
    memset(ly, 0, sizeof(ly));//初始时所有都在权值都在lx
    for(int v = 0; v < n; v++)//逐步增大二分子图
    {
        for(int j = 0; j < m; j++) slack[j] = inf;

        while(true)
        {
            memset(visx, 0, sizeof(visx));
            memset(visy, 0, sizeof(visy));
            if(Find(v))
                break;

            int d = inf;
            for(int i = 0; i < m; i++)
            {
                if(!visy[i])
                {
                    d = min(d, slack[i]); //算法贪心性质这里体现
                }
            }
            if(d == inf) return -1;
            for(int i = 0; i < n; i++)
            {
                if(visx[i])
                {
                    lx[i] -= d;
                }
            }
            for(int i = 0; i < m; i++)
            {
                if(visy[i])
                    ly[i] += d;
                else
                    slack[i] -= d;//在这个while循环中是叠加的,所以后面的slack要减去当前d
            }
        }
    }
    int res = 0;
    for(int i = 0; i < m; i++)
    {
        //cout << linkx[i] << " " << linky[i] << endl;
        if(linky[i] != -1) res += w[linky[i]][i];
    }
    return res;
}
int main()
{
    ios_base::sync_with_stdio(0);
    cin.tie(0);

    while(cin >> n)
    {
        m = n;
        for(int i = 0; i < n; i++)
        {
            lx[i] = -inf;
            for(int j = 0; j < m; j++)
            {
                cin >> w[i][j];
                lx[i] = max(lx[i], w[i][j]);
            }

        }
        cout << KM() << endl;
    }
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值