算法设计-整数变换问题

整数变换问题
Time Limit: 1000 ms Memory Limit: 65536 KiB

Problem Description
整数变换问题。关于整数i的变换f和g定义如下:f(i)=3i;
试设计一个算法,对于给定的2 个整数n和m,用最少的f和g变换次数将n变换为m。例如,可以将整数15用4 次变换将它变换为整数4:4=gfgg(15)。当整数n不可能变换为整数m时,算法应如何处理?
对任意给定的整数n和m,计算将整数n变换为整数m所需要的最少变换次数。
Input
输入数据的第一行有2 个正整数n和m。n≤100000,m≤1000000000。
Output
将计算出的最少变换次数以及相应的变换序列输出。第一行是最少变换次数。第2 行是相应的变换序列。
Sample Input
15 4
Sample Output
4
gfgg

#include<iostream>
using namespace std;
int n, m;
int k;
char a[1000];
int c = 0;

bool DFS(int step, int num){
    if(step > k){
        return false;
    }
    if(num == m){
        return true;
    }
    int temp;
    for(int i = 0 ; i < 2; i++){
        if(i == 0){
            temp = 3 * num;
        }else{
            temp = num / 2;
        }
        if(DFS(step+1, temp)){ //第一次dfs的结果即为最少变换次数
            if(i == 0){
                a[c++] = 'f';
            }else{
                a[c++] = 'g';
            }
            return true;
        }
    }
    return false;
}

int main()
{
    cin >> n >> m;
    k = 1;
    while(!DFS(0, n)){
        k++;
    }
    printf("%d\n", k);
    for(int i=0;i<c;i++)
        cout<<a[i];

    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值