整数变换问题
Time Limit: 1000 ms Memory Limit: 65536 KiB
Problem Description
整数变换问题。关于整数i的变换f和g定义如下:f(i)=3i;
试设计一个算法,对于给定的2 个整数n和m,用最少的f和g变换次数将n变换为m。例如,可以将整数15用4 次变换将它变换为整数4:4=gfgg(15)。当整数n不可能变换为整数m时,算法应如何处理?
对任意给定的整数n和m,计算将整数n变换为整数m所需要的最少变换次数。
Input
输入数据的第一行有2 个正整数n和m。n≤100000,m≤1000000000。
Output
将计算出的最少变换次数以及相应的变换序列输出。第一行是最少变换次数。第2 行是相应的变换序列。
Sample Input
15 4
Sample Output
4
gfgg
#include<iostream>
using namespace std;
int n, m;
int k;
char a[1000];
int c = 0;
bool DFS(int step, int num){
if(step > k){
return false;
}
if(num == m){
return true;
}
int temp;
for(int i = 0 ; i < 2; i++){
if(i == 0){
temp = 3 * num;
}else{
temp = num / 2;
}
if(DFS(step+1, temp)){ //第一次dfs的结果即为最少变换次数
if(i == 0){
a[c++] = 'f';
}else{
a[c++] = 'g';
}
return true;
}
}
return false;
}
int main()
{
cin >> n >> m;
k = 1;
while(!DFS(0, n)){
k++;
}
printf("%d\n", k);
for(int i=0;i<c;i++)
cout<<a[i];
return 0;
}