阿库娅的计算机图形学笔记,Games101篇(二)

课程链接:

【GAMES101-现代计算机图形学入门-闫令琪-哔哩哔哩】 https://b23.tv/MpQuGap

本章节为线性代数篇,有利于计算机图形学的线性代数学习笔记。

1:向量。

向量是一个方向。

 

在原视频中,蜗牛角度的摄像头移动,以及在不同角度下蜗牛壳上的闪烁。

 

我的观点是看蜗牛的摄像头的移动轨迹是一个环形移动,并在移送的过程中对摄像头加了一个矢量速度。

2:向量的定义:

向量在数学意义中是一个有方向的量。举一个现实的例子来说:当你想向某个方向走的时候,此刻,从第三人称视角来看,你还没动,但你的方向就是你此刻的向量。

在计算机中,从某个位置的终点的位置减去起始位置,正是这段时间你的向量。

重点2:向量的*乘

 

点乘是第二集中比较重点的一个概念。

具体对应方法有:

两个物理参数的概念相乘,得到一个新的定义,点乘的结果是一个数字。

例子:光线打到镜子上的例子,I=L*N。

L是光的方向向量,N是法线向量。

想象一下,当我们举着手电筒照镜子的时候,我们直接面对镜子,并看着镜子,是不是当我们的手电筒垂直镜子的时候,反射回我们眼睛的强度是最高的。

使用例子:

计算投影,例如我们在现实生活中的影子。

重点:向量的X乘。

具体公式

喜欢记公式的朋友可以简单记一下。

1:右手定则。

伸出我们的右手。在一个三维坐标系中,从X轴到Y轴的旋转方向。让我们的除了大拇指外的四指向X到Y的方向旋转。大拇指的方向就是向量X乘结果的方向。

X乘结果是一个向量!!!,点乘结果是一个数字!!!。

X乘是我们后续学习变换课程的基础。 

2:基于右手定则,我们可以计算出X乘向量的方向。

应用例子:

1:计算出一个平面的垂直向量。

因为两个向量就可以构成一个平面,试想一下:你的手掌就是一个平面。

2:

A = (3, 0, 0)
B = (0, 4, 0)
面积 = |A × B| / 2 = 6

有助于我们算出一个三角形及其衍生图形的面积:在我们后续进行光栅化的一个个像素的渲染,有着决定性作用!

博主猜想:渲染的过程便是动态规划+每个像素的两个向量的X乘,得到面积!

3:X的计算法则。

博主先给出自己的见解:多个向量组成一个变换。

比如一个点(1,0)

有一个变换为逆时针旋转90度+向坐标X方向平移1个单位

。如果是先旋转再平移。则坐标将从(1,0)—》(0,1)—》(1,1)。

如果是先平移再旋转,则是从(1,0)—》(2,0)—》(0,2)。

两种变换的结果明显不是一个坐标,所以,X乘中向量的顺序是很重要的。

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值