容器、迭代器和算法

文章目录容器、迭代器和算法容器的实现Java的实现方法C++的实现方法容器与迭代器链表容器与迭代器集合与迭代器迭代器与算法求容器中元素纸盒微型算法库容器和迭代器的分类容器的陷阱 这是《深入实践C++模板编程》第五章“容器、迭代器和算法”的读书笔记。 容器、迭代器和算法 通过C++模板可以将类型以及...

2018-10-29 23:15:49

阅读数 200

评论数 0

模板特例

文章目录模板特例vector\模板特例 通过函数模板和类模板,可以为不同类型数据编写统一函数和类。但是现实情况比想象复杂,单一模板很难兼容各种情况。C++还提供了模板特例(template partial specialization):对于某个已有模板,可以为某个或某组模板参数类型另外一种一种...

2018-10-11 23:32:45

阅读数 109

评论数 0

模板参数类型

文章目录模板参数类型整数模板参数函数指针模板参数指针及引用模板参数成员函数指针模板参数模板型模板参数 这是《深入实践C++模板编程》第三章“模板参数类型详解”的读书笔记。 模板参数类型 模板参数通常表示类型,表示类型的模板参数称为类型模板参数(type template parameter);此外...

2018-09-24 22:26:36

阅读数 469

评论数 0

MXNet Data IO

MXNet Data IO设计

2017-06-25 16:25:42

阅读数 1293

评论数 0

PS-Lite源码分析

Parameter Server的PS-Lite实现

2017-06-15 23:09:08

阅读数 6551

评论数 2

C++中的字符串流

字符串流stream,用来做数据类型转换;和C以及C++11实现对比。

2017-05-25 22:23:49

阅读数 1476

评论数 1

程序员应该了解的数字

程序访问不同设备所需时间

2017-05-23 23:25:42

阅读数 5951

评论数 10

《Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition》笔记

CNN要求输入size固定,作者提出SPP layer,去除了CNN这一限制。

2017-04-26 23:18:07

阅读数 1482

评论数 0

《Rich feature hierarchies for accurate object detection and semantic segmentation》笔记

R-CNN,通过CNN提取特征,之后训练SVM分类器分类、回归确定目标区域

2017-04-24 21:35:49

阅读数 880

评论数 0

《A Neural Algorithm of Artistic Style》笔记

图像内容和风格都是比较抽象的,这篇文章通过深度学习,提取了图像内容和风格,并将两者合并,生成新的图像。

2017-04-13 22:36:21

阅读数 5492

评论数 5

《Xception: Deep Learning with Depthwise Separable Convolutios》笔记

继Inception V1-V4之后,又一方法改进其结构。通过解耦和处理cross-channel相关和spatial相关,得到一个Xception结构网络

2017-04-09 20:49:13

阅读数 5066

评论数 0

《Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning》笔记

Inception和Residual结合:Inception-v4和Inception-ResNet

2017-04-06 23:37:33

阅读数 3416

评论数 1

《Rethinking the Inception Architecture for Computer Vision》笔记

Inception-V2设计介绍

2017-04-04 23:11:42

阅读数 6653

评论数 2

《Residual Networks Behave Like Ensembles of Relatively Shallow Networks》笔记

从Ensemble角度解释Residual Networks

2017-03-31 23:16:05

阅读数 2086

评论数 0

梯度下降算法总结

梯度下降法:基本梯度下降法、Momentum梯度下降法、Nesterov Momentum梯度下降法、AdaGrad、RMSprop、AdaDelta、Adam

2017-03-30 21:54:43

阅读数 2016

评论数 0

《Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift》笔记

batch normalization

2017-03-14 23:35:20

阅读数 669

评论数 0

《Understanding the difficulty of training deep feedforward neural networks》笔记

Sigmod为什么不适合深度学习,交叉熵代价函数和平方差代价函数,神经网络权重初始化

2017-03-11 11:13:51

阅读数 2824

评论数 0

机器学习中的损失函数

平方损失函数 对数损失函数 Hinge损失函数

2017-03-01 23:40:38

阅读数 1769

评论数 2

ILSVRC历届冠军论文笔记

记录ILSVRC比赛,几个经典网络结构笔记

2017-02-22 23:39:28

阅读数 14946

评论数 5

cs231n-(9)迁移学习和Fine-tune网络

介绍适合fine-tune的场景,以及方法。

2017-02-18 21:55:09

阅读数 4463

评论数 0

提示
确定要删除当前文章?
取消 删除
关闭
关闭