最长递增子序列(LIS)-动态规划

问题

题目:[拦截导弹]

思路

这个题目的本质是最长递增子序列。首先给出序列的定义,要区别子串。
在一个已知序列: {x1,x2,...xn} 当中,取出若干数组成新的序列 {xi1,xi2,...xim} 。其中下标, i1,i2,...im 保持递增。即新数列中各个数依旧保持原数列中的先后顺序。那么,我们称新的序列 {xi1,xi2,...xim} 为原序列的子序列。若在子序列当中,当 ix<iy 时,有 xix<xiy 。那么我们称这个子序列为原序列的一个递增子序列。

注意:
子序列和子串的区别就是,前者下标不连续,而后者下标连续

最长递增子序列问题就是,在一个给定的序列中,求得一个最长的递增子序列

  1. 状态定义
    dp[i]i
  2. 转移函数
    dp[i]={1,max{1,dp[j]+1|j<iarr[j]<arr[i]},i=0i>0(1)
  3. 初始化
    dp[0]=1(2)
  4. 打表

代码

本题,是最长递减子序列。转移函数修改就好了。

#include <iostream>
#include <fstream>
#include <cstring>
//#define LOCAL
#define N 25

int dp[N + 5];
int arr[N + 5];

int cal_lis( const int* arr, int n );

int main( void )
{
#ifdef LOCAL
    std::ifstream cin( "input.dat" );
#endif
    int n = 0;
    while( std::cin >> n )
    {
        for( int i = 0; i < n; ++i )
        {
            std::cin >> arr[i];
        }
        int ans = cal_lis( arr, n );
        std::cout << ans << std::endl;
    }
#ifdef LOCAL
    cin.close();
#endif
    return 0;
}

int cal_lis( const int* arr, int n )
{
    if( NULL == arr || n <= 0 )
        return -1;
    std::memset( dp, 0, sizeof(dp) );

    dp[0] = 1;
    int max = 1;
    for( int i = 1; i < n; ++i )
    {
        dp[i] = 1;
        for( int j = 0; j < i; ++j )
        {
            if( arr[j] >= arr[i] )
            {
                if( dp[j] + 1 > dp[i] )
                    dp[i] = dp[j] + 1;
            }
        }
        if( dp[i] > max )
            max = dp[i];
    }
    return max;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值