动态规划 - 最长递增子序列(LIS) python实现

最长递增子序列是动态规划中经典的问题,详细如下:

在一个已知的序列{a1,a2,...,an}中,取出若干数组组成新的序列{ai1,ai2,...,aim},其中下标i1,i2,...,im保持递增,即新数列中的各个数之间依旧保持原数列中的先后顺序,那么我们称新的序列{ai1,ai2,...,aim}为原序列的一个子序列。若在子序列中,当下标ix > iy时,aix > aiy,那么我们称这个子序列为原序列的一个递增子序列。最长递增子序列问题,就是在一个给定的原序列中,求得最长递增子序列长度。

有序列{a1,a2,...,an},我们求其最长递增子序列长度。按照递推求解的思想,我们用F[i]代表若递增子序列以ai结束时它的最长长度。当 i 较小,我们容易直接得出其值,如 F[1] = 1。那么,如何由已经求得的 F[i]值推得后面的值呢?假设,F[1]到F[x-1]的值都已经确定,注意到,以ax 结尾的递增子序列,除了长度为1的情况,其它情况中,ax都是紧跟在一个由 ai(i < x)组成递增子序列之后。要求以ax结尾的最长递增子序列长度,我们依次比较 ax 与其之前所有的 ai(i < x), 若ai小于 ax,则说明ax可以跟在以ai结尾的递增子序列之后,形成一个新的递 增子序列。又因为以ai结尾的递增子序列最长长度已经求得,那么在这种情况下,由以 ai 结尾的最长递增子序列再加上 ax 得到的新的序列,其长度也可以确定,取所有这些长度的最大值,我们即能得到 F[x]的值。特殊的,当没有ai(i < x)小 于ax, 那么以 ax 结尾的递增子序列最长长度为1。 即F[x] = max{1,F[i]+1|ai<ax && i<x};

例如序列{1,4,3,2,6,5}的最长递增子序列长度的所有F[i]为:

F[1] (1)F[2](4)F[3](3)F[4](2)F[5](6)F[6](5)
122233

总结一下,求最长递增子序列的递推公式为:

F[1] = 1;

F[i] = max{1,F[j]+1|aj<ai && j<i}

我们可以根据递推公式将算法实现

class myStack:
    #找出以元素i结尾的最长递增子序列
    #每一次为i进行分配时,要检查前面所有的算法ai(i<x)
    #若ai小于ax,则说明ax可以跟在ai后形成一个新的递增子序列
    #否则,以ax结尾的递增子序列的最长长度为1
    def getHeight(self, men, n):
        longest = {}    #c存一个字典
        longest[0] = 1
        for i in range(1, len(men)):
            maxlen = -1
            for j in range(0, i):
                if men[i]>men[j] and maxlen<longest[j]:
                    maxlen = longest[j]
            if maxlen>=1:    #说明之前的递增序列中,有ax可以跟的
                longest[i] = maxlen +1
            else:
                longest[i] = 1
        return max(longest.values())

  • 6
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
动态规划实现递增序列: 最递增序列问题是指在一个给定的序列中,找到一个序列,使得这个序列中的元素是单调递增的,并且在原序列中的位置是不下标连续的。例如,序列{1,3,2,4,5,6,7,8}的最递增序列为{1,3,4,5,6,7,8},度为7。 动态规划算法的思路是:定义一个辅助数组b,b[i]表示以a[i]为结尾的最递增序列度。对于每个i,遍历0~i-1之间的j,如果a[j]<=a[i]并且b[j]的值最大,那么b[i]=b[j]+1。最后,b数组的最大值即为所求的最递增序列度。 以下是动态规划实现递增序列Python代码: ```python def LIS(a): n = len(a) b = [1] * n for i in range(1, n): for j in range(i): if a[j] <= a[i] and b[j] + 1 > b[i]: b[i] = b[j] + 1 return max(b) ``` 时间复杂度为O(n^2)。 0-1背包问题复杂度分析: 0-1背包问题是指有n个物品和一个容量为V的背包,每个物品有一个重量w[i]和一个价值v[i],要求选择若干物品放入背包中,使得在不超过背包容量的前提下,背包中物品的总价值最大。这是一个NP完全问题,没有多项式时间复杂度的解法。 常见的解法有贪心算法和动态规划算法。贪心算法的时间复杂度为O(nlogn),但是不能保证得到最优解;动态规划算法的时间复杂度为O(nV),可以得到最优解,但是当V很大时,时间复杂度会非常高。 因此,在实际应用中,需要根据具体情况选择合适的算法。如果V较小,可以使用动态规划算法;如果V较大,可以使用贪心算法或者其他启发式算法。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值