POJ1692 Crossed Matchings

博客探讨了如何使用动态规划解决POJ1692问题,即找到最多交叉匹配线段的方法。通过优化时间复杂度从O(n^4)降至O(n^2),并详细解释了状态转移方程和关键贪心策略。
摘要由CSDN通过智能技术生成

Crossed Matchings

Description

给定两个正整数数列,如果第一个数列中有一个数和第二个数列中的某个数相同,并且都为r,则我们可以将这两个数用线段连起来。我们称这条线段为 r-匹配线段。

我们想要对于给定的输入,找到画出最多匹配线段的方式,并且满足以下条件:

  1. 每条a-匹配线段恰好和一条b-匹配线段相交,且a b。我们称这样的匹配为交叉匹配。

  2. 不允许一点多线一线多交的情况出现:不允许两条线段从同一个数出发,不允许一条线段和多条其它线段相交。

编一个程序对于给定输入数据,计算匹配线段的最多条数。

Sample Input

3
6 6
1 3 1 3 1 3
3 1 3 1 3 1
4 4
1 1 3 3
1 1 3 3
12 11
1 2 3 3 2 4 1 5 1 3 5 10
3 1 2 3 2 4 12 1 5 5 3

Sample Output

6
0
8


本题重点在于如何通过推导和约束,实现时间复杂度的降维。本题的基本推导思想亦借鉴于模板型线性dp:LIS,LCS,LCIS等的推导方法。

首先根据题意,我们要定义 dp[i][j] 表示序列 a[1...i],b[1...j] 中最多匹配线段数。并且 ai,bj 不一定跟其他值构成匹配(所以这一点有别于一般的dp,我们都是要确定当前枚举的这个被选到,才方便转移)。

首先我们可以得到最简单的做法:

  • 欲匹配 ai,bj ,于是在 a[1...i1] 中找到 ak=bj b[1...j1] 中找到 bp=ai ,用当前枚举的 { k,p} 内的最大值去更新
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值