喜讯 - 深信科创与长安汽车AI Lab合作,在IEEE TIV发表《自然对抗安全关键测试场景生成》论文

近日,深信科创与长安汽车AI Lab合作完成的《Adversarial Safety-Critical Scenario Generation
using Naturalistic Human Driving Priors》(利用人类自然驾驶先验条件生成对抗性安全关键场景)论文,被 IEEE
Transactions on Intelligent Vehicles (简称:IEEE TIV)正式录用,获智能汽车领域权威学术期刊认可。IEEE
TIV是自动驾驶领域影响力最大的期刊之一(影响因子8.41,《期刊引用报告》 JCR Q1区)
,主要收录智能汽车领域——尤其是自动驾驶汽车领域——的先进理论和技术应用论文。

![](https://img-
blog.csdnimg.cn/img_convert/455c13c65d63a0047232e83ecc9816f8.jpeg)

论文链接:https://doi.org/10.1109/TIV.2023.3335862

论文针对自动驾驶车辆安全测试过程中,安全关键型场景稀少、难以获得等问题,提出了一种自然对抗安全关键测试场景生成的方法。该方法利用人类驾驶策略先验条件和强化学习技术,生成大规模真实且多样的挑战性测试场景。在技术实施上,研究人员首先建立自然交通流仿真环境用于模拟真实交通流交互场景;然后利用生成对抗模仿学习对人类驾驶策略进行建模;最后利用训练好的策略模型来设计自然对抗奖励函数,以对基于强化学习的自然对抗模型进行优化求解。

![](https://img-
blog.csdnimg.cn/img_convert/bf219d217ef223408bfdca3405e0f9c4.png)

▲图1 一些非自然对抗场景示例▲

基于真实自动驾驶交通场景数据集,结合交通流建模与强化学习技术,
论文提出如图2所示的自动驾驶自然对抗测试场景生成方法的整体框架,主要包括交通流仿真环境建模、人类驾驶策略建模与自然对抗行为策略建模三大部分。

![](https://img-
blog.csdnimg.cn/img_convert/b5695891c0baa18204ff795ca446ca4d.png)

▲图2 自动驾驶自然对抗测试场景生成方法的整体框架▲

01 交通流仿真环境建模

交通流仿真环境建模主要为训练自然对抗交通流模型提供训练环境,训练环境包括静态路网结构(车道、红绿灯、曲率等信息)和动态车辆运行状态(位置、速度、偏转角等信息);仿真交通流既可通过模拟器随机生成,也可基于自然路采数据集进行仿真复现生成。

02 人类驾驶策略建模

通过利用GAIL(Generative Adversarial Imitation Learning
生成对抗模仿学习)算法训练自然交通流模型。研究人员可以利用GAIL框架对人类驾驶行为策略进行建模,通过生成器与判别器的不断对抗训练,生成器策略生成的数据分布会越来越接近真实的人类驾驶行为分布,从而实现对自然驾驶风格的建模。

03 自然对抗行为策略建模

进一步利用训练完成的自然交通流模型GAIL,来设计对抗测试场景生成算法。为了保证生成大量合理有效的自动驾驶测试场景,自然对抗场景生成算法既要保证智能体的对抗性,又要保证其在真实交通场景中的发生概率,即自然性,因此从自然性和对抗性两个方面来设计reward,以生成多样有效的对抗场景。

![](https://img-
blog.csdnimg.cn/img_convert/bc94d0bce893ef988e47ed0580d17f24.png)

▲对抗场景生成示例▲

该方法的有效性在高速直道场景(NGSIM数据集)和城区十字路口场景(INTERACTION数据集)已被验证。与基线模型相比,在保证自然性和对抗性的同时,该方法将安全关键测试场景的生成效率提升了44%。

![](https://img-
blog.csdnimg.cn/img_convert/5019dab84b3aff028229c7a5d5a2d40d.png)

深信科创拥有良好的自动驾驶仿真技术基础,期待有更多志同道合的优秀人才加入,以及期待有需求的企业合作,欢迎与我们联系:商务合作邮箱contact@synkrotron.ai,人才招聘邮箱hr@synkrotron.ai。

硬核技术实力屡获认可

产品落地进度不断加速

在自动驾驶仿真的探索之路上

深信科创还会给大家带来哪些惊喜?

未来可期,我们一起见证

期待与您携手共创美好未来!

深信科创: 致力于自动驾驶工业软件

深信科创是一家专注于提供自动驾驶仿真及智慧交通解决方案的国家高新技术企业。公司基于人工智能、软件测试、数字孪生与大数据等技术,一直致力于自动驾驶领域的研发和探索,拥有一支高素质的研发团队,自主研发了自动驾驶仿真及数据闭环工具链SYNKROTRON®
Oasis产品系列,能够提供高精度传感器模型、动力学模型及感知级交通环境仿真解决方案等,客户可以在仿真平台上对自动驾驶系统开展大规模的仿真测试和模型训练,提前识别自动驾驶系统缺陷、降低实车测试成本、消除场景端落地的安全隐患,加速无人驾驶技术在场景端的安全落地。

更多学习资料、产品试用和社群交流请联系微信:synkrotron1

预约产品试用/技术交流:

手机端: https://synkrotron.ai/vue3/dist/index.html#/appoint_mobile

电脑端: https://synkrotron.ai/vue3/dist/index.html#/appoint_desktop

接下来我将给各位同学划分一张学习计划表!

学习计划

那么问题又来了,作为萌新小白,我应该先学什么,再学什么?
既然你都问的这么直白了,我就告诉你,零基础应该从什么开始学起:

阶段一:初级网络安全工程师

接下来我将给大家安排一个为期1个月的网络安全初级计划,当你学完后,你基本可以从事一份网络安全相关的工作,比如渗透测试、Web渗透、安全服务、安全分析等岗位;其中,如果你等保模块学的好,还可以从事等保工程师。

综合薪资区间6k~15k

1、网络安全理论知识(2天)
①了解行业相关背景,前景,确定发展方向。
②学习网络安全相关法律法规。
③网络安全运营的概念。
④等保简介、等保规定、流程和规范。(非常重要)

2、渗透测试基础(1周)
①渗透测试的流程、分类、标准
②信息收集技术:主动/被动信息搜集、Nmap工具、Google Hacking
③漏洞扫描、漏洞利用、原理,利用方法、工具(MSF)、绕过IDS和反病毒侦察
④主机攻防演练:MS17-010、MS08-067、MS10-046、MS12-20等

3、操作系统基础(1周)
①Windows系统常见功能和命令
②Kali Linux系统常见功能和命令
③操作系统安全(系统入侵排查/系统加固基础)

4、计算机网络基础(1周)
①计算机网络基础、协议和架构
②网络通信原理、OSI模型、数据转发流程
③常见协议解析(HTTP、TCP/IP、ARP等)
④网络攻击技术与网络安全防御技术
⑤Web漏洞原理与防御:主动/被动攻击、DDOS攻击、CVE漏洞复现

5、数据库基础操作(2天)
①数据库基础
②SQL语言基础
③数据库安全加固

6、Web渗透(1周)
①HTML、CSS和JavaScript简介
②OWASP Top10
③Web漏洞扫描工具
④Web渗透工具:Nmap、BurpSuite、SQLMap、其他(菜刀、漏扫等)

那么,到此为止,已经耗时1个月左右。你已经成功成为了一名“脚本小子”。那么你还想接着往下探索吗?

阶段二:中级or高级网络安全工程师(看自己能力)

综合薪资区间15k~30k

7、脚本编程学习(4周)
在网络安全领域。是否具备编程能力是“脚本小子”和真正网络安全工程师的本质区别。在实际的渗透测试过程中,面对复杂多变的网络环境,当常用工具不能满足实际需求的时候,往往需要对现有工具进行扩展,或者编写符合我们要求的工具、自动化脚本,这个时候就需要具备一定的编程能力。在分秒必争的CTF竞赛中,想要高效地使用自制的脚本工具来实现各种目的,更是需要拥有编程能力。

零基础入门的同学,我建议选择脚本语言Python/PHP/Go/Java中的一种,对常用库进行编程学习
搭建开发环境和选择IDE,PHP环境推荐Wamp和XAMPP,IDE强烈推荐Sublime;

Python编程学习,学习内容包含:语法、正则、文件、 网络、多线程等常用库,推荐《Python核心编程》,没必要看完

用Python编写漏洞的exp,然后写一个简单的网络爬虫

PHP基本语法学习并书写一个简单的博客系统

熟悉MVC架构,并试着学习一个PHP框架或者Python框架 (可选)

了解Bootstrap的布局或者CSS。

阶段三:顶级网络安全工程师

如果你对网络安全入门感兴趣,那么你需要的话可以点击这里👉网络安全重磅福利:入门&进阶全套282G学习资源包免费分享!

学习资料分享

当然,只给予计划不给予学习资料的行为无异于耍流氓,这里给大家整理了一份【282G】的网络安全工程师从入门到精通的学习资料包,可点击下方二维码链接领取哦。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值