验证算法——二叉排序树相关算法

问题及代码:

/*  
* Copyright (c) 2015, 烟台大学计算机与控制工程学院  
* All rights reserved.  
* 文件名称: main.cpp 
* 作者:高哲 
* 完成日期:2015年12月13日  
* 版本号:codeblocks   
* 问题描述:  验证二叉排序树相关算法 
* 输入描述: 无  
* 程序输出: 见运行结果  
*/   
#include <stdio.h>  
#include <malloc.h>  
typedef int KeyType;  
typedef char InfoType[10];  
typedef struct node                 //记录类型  
{  
    KeyType key;                    //关键字项  
    InfoType data;                  //其他数据域  
    struct node *lchild,*rchild;    //左右孩子指针  
} BSTNode;  
  
//在p所指向的二叉排序树中,插入值为k的节点  
int InsertBST(BSTNode *&p,KeyType k)  
{  
    if (p==NULL)                        //原树为空, 新插入的记录为根结点  
    {  
        p=(BSTNode *)malloc(sizeof(BSTNode));  
        p->key=k;  
        p->lchild=p->rchild=NULL;  
        return 1;  
    }  
    else if (k==p->key)                 //树中存在相同关键字的结点,返回0  
        return 0;  
    else if (k<p->key)  
        return InsertBST(p->lchild,k);  //插入到*p的左子树中  
    else  
        return InsertBST(p->rchild,k);  //插入到*p的右子树中  
}  
  
//由有n个元素的数组A,创建一个二叉排序树  
BSTNode *CreateBST(KeyType A[],int n)   //返回BST树根结点指针  
{  
    BSTNode *bt=NULL;                   //初始时bt为空树  
    int i=0;  
    while (i<n)  
    {  
        InsertBST(bt,A[i]);             //将关键字A[i]插入二叉排序树T中  
        i++;  
    }  
    return bt;                          //返回建立的二叉排序树的根指针  
}  
  
//输出一棵排序二叉树  
void DispBST(BSTNode *bt)  
{  
    if (bt!=NULL)  
    {  
        printf("%d",bt->key);  
        if (bt->lchild!=NULL || bt->rchild!=NULL)  
        {  
            printf("(");                        //有孩子结点时才输出(  
            DispBST(bt->lchild);                //递归处理左子树  
            if (bt->rchild!=NULL) printf(",");  //有右孩子结点时才输出,  
            DispBST(bt->rchild);                //递归处理右子树  
            printf(")");                        //有孩子结点时才输出)  
        }  
    }  
}  
  
//在bt指向的节点为根的排序二叉树中,查找值为k的节点。找不到返回NULL  
BSTNode *SearchBST(BSTNode *bt,KeyType k)  
{  
    if (bt==NULL || bt->key==k)         //递归终结条件  
        return bt;  
    if (k<bt->key)  
        return SearchBST(bt->lchild,k);  //在左子树中递归查找  
    else  
        return SearchBST(bt->rchild,k);  //在右子树中递归查找  
}  
  
//二叉排序树中查找的非递归算法  
BSTNode *SearchBST1(BSTNode *bt,KeyType k)  
{  
    while (bt!=NULL)  
    {  
        if (k==bt->key)  
            return bt;  
        else if (k<bt->key)  
            bt=bt->lchild;  
        else  
            bt=bt->rchild;  
    }  
    return NULL;  
}  
  
void Delete1(BSTNode *p,BSTNode *&r)  //当被删*p结点有左右子树时的删除过程  
{  
    BSTNode *q;  
    if (r->rchild!=NULL)  
        Delete1(p,r->rchild);   //递归找最右下结点  
    else                        //找到了最右下结点*r  
    {  
        p->key=r->key;          //将*r的关键字值赋给*p  
        q=r;  
        r=r->lchild;            //直接将其左子树的根结点放在被删结点的位置上  
        free(q);                //释放原*r的空间  
    }  
}  
  
void Delete(BSTNode *&p)   //从二叉排序树中删除*p结点  
{  
    BSTNode *q;  
    if (p->rchild==NULL)        //*p结点没有右子树的情况  
    {  
        q=p;  
        p=p->lchild;            //直接将其右子树的根结点放在被删结点的位置上  
        free(q);  
    }  
    else if (p->lchild==NULL)   //*p结点没有左子树的情况  
    {  
        q=p;  
        p=p->rchild;            //将*p结点的右子树作为双亲结点的相应子树  
        free(q);  
    }  
    else Delete1(p,p->lchild);  //*p结点既没有左子树又没有右子树的情况  
}  
  
int DeleteBST(BSTNode *&bt, KeyType k)  //在bt中删除关键字为k的结点  
{  
    if (bt==NULL)  
        return 0;               //空树删除失败  
    else  
    {  
        if (k<bt->key)  
            return DeleteBST(bt->lchild,k); //递归在左子树中删除为k的结点  
        else if (k>bt->key)  
            return DeleteBST(bt->rchild,k); //递归在右子树中删除为k的结点  
        else  
        {  
            Delete(bt);     //调用Delete(bt)函数删除*bt结点  
            return 1;  
        }  
    }  
}  
int main()  
{  
    BSTNode *bt;  
    int n=12,x=46;  
    KeyType a[]= {25,18,46,2,53,39,32,4,74,67,60,11};  
    bt=CreateBST(a,n);  
    printf("BST:");  
    DispBST(bt);  
    printf("\n");  
    printf("删除%d结点\n",x);  
    if (SearchBST(bt,x)!=NULL)  
    {  
        DeleteBST(bt,x);  
        printf("BST:");  
        DispBST(bt);  
        printf("\n");  
    }  
    return 0;  
  
}  


运行结果:

知识点总结:

在二叉排序树中进行的构造,查找以及删除的功能。

 

y
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值