BERT
摘要
论文提出了新的语言表示模型(language representation model)
BERT:Bidirectional Encoder Representations from Transformers
由无标注的文本,双向地训练得到,在多个下游任务fine-tune取得了很好的提升
Introduction
pre-training 有两种 ELMo的feature-based和 GPT的fine-tune,BERT使用了fine-tune 并改进了 GPT 的单向网络,使用mask ML的双向网络进行训练,为了更好地提升sentence级别的理解,加入了next sentence prediction 的任务。在多个下游任务中,相较于特定任务的模型,Bert都有明显的提升
Related Work
- Unsupervised Feature-based Approaches(like ELMo)
- Unsupervised Fine-tuning Approaches(like GPT)
- Transfer Learning from Supervised Data
BERT
BERTBASE(L=12, H=768, A=12, Total Parameters=110M)
BERTLARGE(L=24, H=1024,A=16, Total Parameters=340M)
[CLS] [SEP]
- Masked LM:
- mask 15%
- 80% [MASK],10% random,10% unchange
- Next Sentence Prediction (NSP)
- [CLS] to predict
- 50% isNext,50% not
Experiments
- GLUE
使用[CLS]的输出,单层分类网络,32batchsize - SQuAD v1.1
使用开头S和结尾E维度为H的向量与所有token的向量相乘计算分数 - SQuAD v2.0
有多个span预测,我们用[CLS]的向量和S,E相乘得到的分数加上一个值作为阈值,大于这个阈值的位置即为答案 - SWAG
利用[CLS]计算分数
Ablation Studies
Task
Model Size
feature-based