BERT

BERT

论文
代码
torch

摘要

论文提出了新的语言表示模型(language representation model)
BERT:Bidirectional Encoder Representations from Transformers
由无标注的文本,双向地训练得到,在多个下游任务fine-tune取得了很好的提升

Introduction

pre-training 有两种 ELMo的feature-based和 GPT的fine-tune,BERT使用了fine-tune 并改进了 GPT 的单向网络,使用mask ML的双向网络进行训练,为了更好地提升sentence级别的理解,加入了next sentence prediction 的任务。在多个下游任务中,相较于特定任务的模型,Bert都有明显的提升

Related Work

  • Unsupervised Feature-based Approaches(like ELMo)
  • Unsupervised Fine-tuning Approaches(like GPT)
  • Transfer Learning from Supervised Data

BERT

BERTBASE(L=12, H=768, A=12, Total Parameters=110M)
BERTLARGE(L=24, H=1024,A=16, Total Parameters=340M)
[CLS] [SEP]

  • Masked LM:
    • mask 15%
    • 80% [MASK],10% random,10% unchange
  • Next Sentence Prediction (NSP)
    • [CLS] to predict
    • 50% isNext,50% not

Experiments

  • GLUE
    使用[CLS]的输出,单层分类网络,32batchsize
  • SQuAD v1.1
    使用开头S和结尾E维度为H的向量与所有token的向量相乘计算分数
  • SQuAD v2.0
    有多个span预测,我们用[CLS]的向量和S,E相乘得到的分数加上一个值作为阈值,大于这个阈值的位置即为答案
  • SWAG
    利用[CLS]计算分数
Ablation Studies

Task
在这里插入图片描述
Model Size
在这里插入图片描述
feature-based
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值