判断是否为无损连接分解

判断是否为无损连接分解

不分享无用的东西

软考备考选择题过程中遇到的问题

例题

设有关系模式R(U,V,W,X,Y,Z),其函数依赖集:F={U→V,W→Z,Y→U,WY→X},现有下列分解:p={UVY,WXYZ}

判断分解p是否为无损连接

一、画出这样的二维图

UVWXYZ
UVY
WXYZ

二、在纵轴每个关系中拥有的元素添加ai(看下面)

UVWXYZ
UVYa1a2a5
WXYZa3a4a5a6

三、根据函数依赖集(F={U→V,W→Z,Y→U,WY→X})中的每个依赖,填充二维表(看下面)

根据         U→V

观察U列与V列,看是否有其中一行是U列跟V列都有元素这里a1跟a2,如果有,则把V列所有空都填上V列中对应行的元素,这里是a2。(我描述的有点乱,但具体操作起来很简单

UVWXYZ
UVYa1a2a5
WXYZa2a3a4a5a6

根据         W→Z

与上述同理,a3跟a6在同一行,则Z列全部填上a6

UVWXYZ
UVYa1a2a5a6
WXYZa2a3a4a5a6

根据         Y→U

与上述同理,a5跟a1在同一行,则U列全部填上a1

UVWXYZ
UVYa1a2a5a6
WXYZa1a2a3a4a5a6

根据         WY→X

这里注意!!!!!!!这里是WY推出X,应该考虑WY都有的那一行再跟X比较

UVWXYZ
UVYa1a2a4a5a6
WXYZa1a2a3a4a5a6

而无损连接分解在二维图里的表示方式就是,有其中一行全部覆盖了ai(这里是WXYZ行)。

我们的二维图,WXYZ行全部覆盖了ai,故该分解为无损连接分解

评论 14
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值