💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
⛳️赠与读者
👨💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。
或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎
💥1 概述
基于双向门控循环单元(BiGRU)的风电功率预测是一种深度学习方法,专注于利用单变量时间序列数据预测未来的风电输出功率。BiGRU作为循环神经网络(RNN)的一种变体,结合了GRU(门控循环单元)和双向处理的优势,能够有效地捕捉序列数据中的长期依赖关系和前后上下文信息,特别适用于像风电功率这样具有明显时间序列特性的预测任务。下面是基于BiGRU进行风电功率预测的研究概述:
研究背景
风能的不稳定性给电网调度带来挑战,因此准确预测风电功率对于确保电网的稳定运行、优化资源配置具有重要意义。BiGRU模型因其在处理序列数据方面的高效性和有效性,在风电预测领域逐渐受到关注。
BiGRU简介
BiGRU通过“门”机制控制信息的遗忘、更新和输出,相比传统的RNN,它能更有效地解决梯度消失和梯度爆炸问题,从而在长序列数据上表现更佳。双向结构意味着模型同时从过去和未来的上下文中学习特征,这对于风电功率预测尤为重要,因为当前的风况可能受之前及之后风速、风向等因素的影响。
研究方法
-
数据准备:收集并整理风电场的历史功率数据,通常还需要结合气象数据(如温度、湿度、气压等)作为辅助特征。数据预处理包括缺失值处理、异常值检测、标准化等。
-
特征工程:基于单变量(主要指风电功率序列)设计或选择合适的特征,可能包括功率的滑动平均、历史同日/时段的功率值等,以提取潜在的周期性和趋势性信息。
-
模型构建:构建BiGRU模型,确定隐藏层的数量、单元数、输入输出形式等超参数。模型的输入为处理后的单变量时间序列数据,输出为未来一段时间内的风电功率预测值。
-
多步预测实现:可以采用“单次多步”或“多次单步”的策略进行多步预测。“单次多步”直接预测整个预测序列,“多次单步”则是逐步进行,每一步的预测值作为下一次预测的输入。
-
训练与调优:使用历史数据对模型进行训练,并通过交叉验证选择最优模型参数,防止过拟合。损失函数常选用均方误差(MSE)或均方根误差(RMSE),优化算法可以是Adam或RMSprop。
-
性能评估:在独立的测试集上评估模型的预测性能,重点关注预测误差指标如RMSE、MAE、MAPE等,以及模型的稳定性和泛化能力。
研究挑战与展望
- 数据质量和量:提高数据质量,增加可用数据量,特别是包含极端天气情况的数据,以提升模型的鲁棒性和预测精度。
- 特征选择与提取:探索更有效的特征工程方法,特别是如何从单一风功率序列中提取更多有价值的信息。
- 模型复杂度与解释性:平衡模型的复杂度和预测效果,同时增强模型的可解释性,便于理解和优化。
- 集成学习与混合模型:结合其他机器学习或深度学习模型(如集成学习、CNN、LSTM等)构建更强大的预测系统,提高预测性能。
基于BiGRU的风电功率预测研究,通过深度学习技术的先进应用,为提高风电预测精度、促进可再生能源的高效整合提供了有力支持。
📚2 运行结果
部分代码:
layers0 = [ ...
% 输入特征
sequenceInputLayer([numFeatures,1,1],'name','input') %输入层设置
sequenceFoldingLayer('name','fold') %使用序列折叠层对图像序列的时间步长进行独立的卷积运算。
% CNN特征提取
convolution2dLayer([2,1],4,'Stride',[1,1],'name','conv1') %添加卷积层,64,1表示过滤器大小,10过滤器个数,Stride是垂直和水平过滤的步长
batchNormalizationLayer('name','batchnorm1') % BN层,用于加速训练过程,防止梯度消失或梯度爆炸
reluLayer('name','relu1') % ReLU激活层,用于保持输出的非线性性及修正梯度的问题
% 池化层
maxPooling2dLayer([2,1],'Stride',2,'Padding','same','name','maxpool') % 第一层池化层,包括3x3大小的池化窗口,步长为1,same填充方式
% 展开层
sequenceUnfoldingLayer('name','unfold') %独立的卷积运行结束后,要将序列恢复
%平滑层
flattenLayer('name','flatten')
lstmLayer(25,'Outputmode','last','name','hidden1')
dropoutLayer(0.2,'name','dropout_1') % Dropout层,以概率为0.2丢弃输入
fullyConnectedLayer(outdim,'name','fullconnect') % 全连接层设置(影响输出维度)(cell层出来的输出层) %
regressionLayer('Name','output') ];
lgraph0 = layerGraph(layers0);
lgraph0 = connectLayers(lgraph0,'fold/miniBatchSize','unfold/miniBatchSize');
%% Set the hyper parameters for unet training
options0 = trainingOptions('adam', ... % 优化算法Adam
'MaxEpochs', 150, ... % 最大训练次数
'GradientThreshold', 1, ... % 梯度阈值
'InitialLearnRate', 0.01, ... % 初始学习率
'LearnRateSchedule', 'piecewise', ... % 学习率调整
'LearnRateDropPeriod',70, ... % 训练100次后开始调整学习率
'LearnRateDropFactor',0.01, ... % 学习率调整因子
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。
[1]张新生,贺凯璐.基于SSA-CNN的长距离矿浆管道临界流速预测[J].安全与环境学报, 2022.
[2]王华君,惠晶.基于CNN和LSSVM的人脸图像年龄估计方法[J].信息与电脑, 2017(7):3.DOI:10.3969/j.issn.1003-9767.2017.07.034.
[3]范高锋,王伟胜,刘纯,等.基于人工神经网络的风电功率预测[J].中国电机工程学报, 2008, 28(34):6.DOI:CNKI:SUN:ZGDC.0.2008-34-020.
[4]徐曼,乔颖,鲁宗相.短期风电功率预测误差综合评价方法[J].电力系统自动化, 2011.DOI:CNKI:SUN:DLXT.0.2011-12-005.
🌈4 Matlab代码、数据
资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取