【声学】径向基函数声学层析成像(Matlab实现)

💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码实现


💥1 概述

一、技术原理:该技术利用径向基函数来处理声学信号。径向基函数是一种具有特定数学形式的函数,其特点是对于输入的空间位置变量,函数值仅取决于该位置与某一中心位置的距离。在声学层析成像中,通过在空间中布置一系列的声学传感器,接收来自不同方向的声波信号。这些信号经过处理后,利用径向基函数来构建关于被测物体内部声学特性的数学模型。通过求解这个模型,可以得到被测物体内部的声学参数分布,从而实现对物体的成像。

二、应用领域:1. 无损检测:可以对材料或结构内部的缺陷进行检测,如检测金属材料中的裂纹、空洞等。由于声学层析成像不破坏被测物体,因此在工业生产中具有重要的应用价值。 2. 医学成像:在医学领域,径向基函数声学层析成像可以用于对人体内部组织的成像,例如对肝脏、肾脏等器官的病变进行检测。 3. 地质勘探:可以用于探测地下岩层的结构和特性,帮助地质学家了解地下地质情况。

三、优势:1. 高分辨率:能够提供较高的空间分辨率,对被测物体内部的细节进行清晰成像。 2. 适应性强:对于不同形状和大小的物体都能进行有效的成像,具有较强的适应性。 3. 非接触式:声学传感器与被测物体之间无需直接接触,不会对被测物体造成损伤。 4. 实时性:在一定条件下可以实现实时成像,为动态过程的监测提供了可能。

四、挑战与发展趋势挑战方面,该技术在复杂环境中的应用还存在一些问题,如噪声干扰、多路径传播等会影响成像质量。此外,对于大规模物体的成像,计算量较大,需要进一步提高计算效率。 发展趋势上,未来径向基函数声学层析成像技术将不断提高成像分辨率和精度,拓展应用领域。同时,与其他成像技术的融合也是一个重要的发展方向,例如与光学成像、磁共振成像等技术相结合,实现多模态成像,为更准确地了解被测物体提供更多的信息。

📚2 运行结果

主函数部分代码:

N_xd=16;%number of transducers
sig_dt=1e-6;%(s) std of error to add to dt
N_r=25;%number of radial basis functions
    
recalculate=true;%set this to false to skip recalculating
rbf_data_fname='gerris_rbf_data.mat';
if recalculate
    
    fprintf('Calculating forward problem...')
    gerris_fname='simsave-5.0.gfs';
    %this data was calculated using the Gerris Flow Solver
    %(http:gfs.sourceforge.net), from the Karman vortex street example
    
    %since Gerris data is not regular, we'll fit a RBF to the temperature
    %and velocity data, then use that to calculate the flight times
    data=load(gerris_fname);%load [x y z u v]

    N_rbf_f=300;%number of rbf centers for forward problem
    X_scale=10;%rescale data
    Sc_G=[3 3]*X_scale;%scale factor for gerris
    OS_G=[1 0];%(m) offset for gerris data

    X_limits=[-2 2;-2 2]*X_scale;%limits for training
    Xc_fu=[X_limits(1,1)+diff(X_limits(1,:))*rand(1,N_rbf_f);X_limits(2,1)+diff(X_limits(2,:))*rand(1,N_rbf_f)]';%model rbf centres
    Xc_fv=[X_limits(1,1)+diff(X_limits(1,:))*rand(1,N_rbf_f);X_limits(2,1)+diff(X_limits(2,:))*rand(1,N_rbf_f)]';
    Xc_fT=[X_limits(1,1)+diff(X_limits(1,:))*rand(1,N_rbf_f);X_limits(2,1)+diff(X_limits(2,:))*rand(1,N_rbf_f)]';

    x_G=(data(:,1)-OS_G(1))*Sc_G(1);%x for Gerris data
    y_G=(data(:,2)-OS_G(2))*Sc_G(2);%x for Gerris data
    U_idx=find((x_G>X_limits(1,1))&(x_G<X_limits(1,2))&(y_G>X_limits(2,1))&(y_G<X_limits(2,2)));
    x_G=x_G(U_idx);
    y_G=y_G(U_idx);

    k_fu=1*ones(N_rbf_f,1)/X_scale^2;%prescalar
    k_fv=1*ones(N_rbf_f,1)/X_scale^2;
    k_fT=4*ones(N_rbf_f,1)/X_scale^2;
    k_fu(1)=0;%allow for bias
    k_fv(1)=0;
    k_fT(1)=0;

    u0=mean(data(U_idx,4));%(m/s) base velocity
    v0=mean(data(U_idx,5));%(m/s) base velocity
    T=293+data(U_idx,6);%(K)  temperature
    T0=mean(T);%(K) base temperature
    [W_fu]=train_rbf([x_G y_G],data(U_idx,4)-u0,Xc_fu,k_fu);
    [W_fv]=train_rbf([x_G y_G],data(U_idx,5)-v0,Xc_fv,k_fv);
    [W_fT]=train_rbf([x_G y_G],T-T0,Xc_fT,k_fT);

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

[1]孔倩,赵义豪,姜根山,等.流场声学层析成像测量方法仿真和实验研究[J].仪器仪表学报,2024,45(06):63-74.DOI:10.19650/j.cnki.cjsi.J2412605.

[2]常欣雨.声学非均匀介质中的光声层析成像方法研究[D].中北大学,2024.

🌈4 Matlab代码实现

图片

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值