💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
⛳️赠与读者
👨💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能解答你胸中升起的一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。
或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎
💥1 概述
基于场景分析法的电动车优化调度研究
一、概述
近年来,电动汽车(EV)的发展受到越来越多的关注。电动汽车凭借其环保、高效等优势,逐渐成为未来交通发展的重要方向。然而,随机充放电的特性使得电动汽车的集成变得困难。传统充电、快速充电和电池更换是电动汽车最常用的充电模式。
针对电动汽车随机充电的各种场景,提出一种充电模型。采用随机抽样方法建立电动汽车负荷时序分布统计模型,所提出的模型能够很好地反映大规模电动汽车广泛随机地连接到大梁(此处可能有误,推测应为电网)的充电集群特性。然后,考虑电动汽车在指定时间段内的放电特性,基于拉丁超立方体采样方法建立充放电集群模型。该集聚模型可以反映 EV 在 24 小时周期内的时序分布特征。
二、算例
案例 1:没有乘客
功率 = 1876888.08W,启动电流 = 18.77A,额定电流 = 5.00A,额定扭矩 = 60811.17N - m,启动电流在安全限值内。
案例 2:半数乘客
启动扭矩 = 283898.45N - m
案例 3:所有乘客
起动转矩 = 345584.94N - m,额定扭矩 = 74822.97N - m
三、Matlab 代码实现相关思路
作为移动储能单元,电动汽车可以实现与电网的能量交换。在 Matlab 代码实现过程中,首先要明确各个参数的含义和取值范围。
对于建立电动汽车负荷时序分布统计模型,随机抽样方法的实现需要合理设置抽样的范围、步长等参数。例如,可以使用 Matlab 中的随机数生成函数,结合电动汽车的相关参数,生成符合实际情况的随机样本,以此来构建负荷时序分布模型。
在基于拉丁超立方体采样方法建立充放电集群模型时,要注意采样的均匀性和合理性。拉丁超立方体采样能够保证在样本空间中均匀地选取样本点,从而更准确地反映 EV 在 24 小时周期内的时序分布特征。在 Matlab 中可以通过编写相应的函数来实现拉丁超立方体采样算法,将采样得到的数据用于构建充放电集群模型。
此外,在整个代码实现过程中,还需要考虑数据的存储、读取以及结果的可视化等方面。合理的数据存储结构可以方便后续的数据处理和分析,而良好的可视化展示能够更直观地呈现研究结果,帮助研究人员更好地理解和评估模型的性能。
五、研究意义与展望
在当今社会,随着电动汽车保有量的不断增加,其优化调度问题显得尤为重要。基于场景分析法的电动车优化调度研究不仅能够有效解决电动汽车随机充放电给电网带来的挑战,还能提高能源利用效率,降低运行成本。
未来的研究可以进一步拓展场景分析的范围,考虑更多复杂的实际情况,如不同地区的用电习惯差异、电动汽车行驶路径的不确定性等。同时,可以结合更先进的算法和技术,如深度学习、强化学习等,不断优化电动车的调度策略,以实现更加高效、智能的电动车调度管理,为推动电动汽车产业的可持续发展提供更有力的支持。
📚2 运行结果
3 运行结果
部分代码:
figure('Name','Vehicle Speed - Power Relation for Case 1','NumberTitle','off');
plot(s_array,P_array,'Color','c','Marker','.','LineWidth',2);
title('案例1的车辆速度-功率关系');
xlabel('速度 (km/h)');
ylabel('有功功率 (W)');
figure('Name','Vehicle Speed - Power Relation for Case 1','NumberTitle','off');
plot(s_array,P_array,'Color','c','Marker','.','LineWidth',2);
title('案例1的车辆速度-功率关系');
xlabel('速度 (km/h)');
ylabel('有功功率 (W)');
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。(文章内容仅供参考,具体效果以运行结果为准)
🌈4 Matlab代码实现
资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取