随机抽样包含5种:简单随机抽样、系统抽样、分类随机抽样、整群随机抽样和多段随机抽样,下面一一讲解相关定义、例子和适应范围。
1. 简单随机抽样
1.1 定义:
1.2 例子:
- 直抽样法;
- 抽签法或抓阄法,抽样单位全部编上号码,将号码写在底片上搓成团;
- 随机数表法(可保证随机性);
1.3 适应范围
2. 系统抽样(等距随机抽样)
2.1 定义:
依据一定的抽样距离,从总体中抽取样本。
- 对总体进行编号;
- 确定分段距离,并在第一段用简单随机抽样确定第一个个体编号;
- 按照一定的规则抽取剩余样本,通常按照分段距离抽取出样本。
3. 分层随机抽样(类型随机抽样)
3.1 定义:
- 将总体各单位按一定标准分成各种类型(或层);
- 根据各类型单位数与总体单位数的比例,确定从各类型中抽取样本单位的数量;
- 按照随机原则从各类型中抽取样本。
3.2 例子:
我们要了解某市400个国营企业的生产经营情况,决定采取类型随机抽样法抽取20个企业作为样本进行调查,其具体做法是:
- 将这400个企业按产业(也可按行政区划、盈利情况、规模大小等)分为三类,假定第一产业40个,第二产业200个,第三产业160个。
- 按各类企业在总体中的比重,确定各类企业抽取样本单位的数量。其中,第一产业的企业占总体10%,按比例应抽样本企业2个;按同样方法计算,第二产业中应抽样本企业10个,第三产业中应抽样本企业8个。
- 采用简单随机抽样或等距随机抽样方法,从各类企业中抽出上述样本数量。
如果一个公司有七个销售员,则可以依据每个销售员所服务的顾客数量,从每个销售员的顾客中抽取一部分共同组成样本。
3.3 适应范围
- 优点:
它适用于总体单位数量较多、内部差异较大的调查对象。与简单随机抽样和等距随机抽样相比较,在样本数量相同时,它的抽样误差较小;
在抽样误差的要求相同时,它所需的样本数量较少。 - 缺点:
必须对总体各单位的情况有较多的了解,否则无法作出科学的分类。而这一点在实际调查之前又往往难以做到。
4. 整群随机抽样(集体随机抽样)
4.1 定义:
- 将抽样框内抽样单位按一定标准分成许多群体,并把每一个群体看做一个抽样单位;
- 按照随机原则从这些群体中抽出若干个群体作为调查样本;
- 调查上述样本群体中所有抽样单位。
4.2 例子:
在一个小时内生成出的零件可以代表一个星期内生产出的零件。
4.3 适应范围:
如果数量保持不变或者没有大的变动,则适宜采用此方法。
5. 多段随机抽样(多级随机抽样、分段随机抽样)
5.1 定义:
把抽样过程分成两个或两个以上阶段进行;
抽样步骤为:
(一)先将调查总体各单位按一定标志分成若干集群,作为抽样的第一级单位,然后将第一级单位又分成若干小的集群,作为抽样的第二级单位。依此类推,还可以分成第三级、第四级单位。
(二)按照随机原则,先在第一级单位中抽出若干单位作为第一级单位样本,然后再在第一级单位样本中抽出第二级单位样本,依此类推,还可以抽出第三级单位样本、第四级单位样本。调查工作至第二级单位样本者,为两阶段随机抽样;至第三级单位、第四级单位样本者,为三阶段或四阶段随机抽样。
5.2 例子:
5.3 适应范围
集合各种随机抽样法的优点,对调查总体情况的了解,要求较低,一般只要了解下一级单位的组成情况就可抽样。能用最小的人财物力消耗达到最佳的抽样效果。
特别适用于调查总体的范围大、单位多、情况复杂的调查对象。