✅博主简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,Matlab项目合作可私信。
🍎个人主页:海神之光
🏆代码获取方式:
海神之光Matlab王者学习之路—代码获取方式
⛳️座右铭:行百里者,半于九十。
更多Matlab仿真内容点击👇
Matlab图像处理(进阶版)
路径规划(Matlab)
神经网络预测与分类(Matlab)
优化求解(Matlab)
语音处理(Matlab)
信号处理(Matlab)
车间调度(Matlab)
⛄一、多无人机动态任务分配简介
对于多无人机动态任务分配,通常采用以下策略:
任务分解:将整体任务分解为多个子任务,并确定每个子任务的优先级和要求。
任务规划:根据任务的性质和要求,以及无人机的状态和能力,利用算法进行任务规划。常用的算法包括贪婪算法、遗传算法、禁忌搜索等。
任务调度:根据任务的优先级和无人机的可用性,动态地将子任务分配给无人机。可以考虑无人机的飞行速度、续航能力、传感器负载等因素。
通信与协调:无人机之间需要进行通信和协调,以确保任务的顺利执行。可以利用无线通信技术和分布式协同算法来实现。
实时更新:在任务执行过程中,根据无人机的实时状态和环境变化,及时更新任务分配策略,以适应动态的任务需求。
⛄二、部分源代码
clear all;
global trustGain targetMeasurements targetValue targetThreshold trustFlag st Phat errorFlag
global numCoalitions numResources actualPerformance
% initialize the problem
tarIndex = 1;
nTargets = 5;
trustFlag = 1; % 0 for trusting everyone, 1 for estimating trust
[uav,target,l,b] = initializeMonte_Central(tarIndex,nTargets);
trustGain = 1/length(uav);
%targetMeasurements = rand(length(target),1);%0.7+rand(length(target),1)*0.3;
load targetMeasurements
targetMeasurements = max(0.3,targetMeasurements);
numCoalitions = 0;
numResources = 0;
% target information
targetValue =0;
targetThreshold = 0.75; % target threshold for counting the value
targetLocations = [];
targetResources = [];
for iTarget = 1:length(target)
targetLocations = [targetLocations; target(iTarget).Location];
targetResources = [targetResources; target(iTarget).Resources];
end
dt =.25; % time step
broadcast = [];
performance = zeros(1000*dt,length(uav));
pindex = 1;
st(1) = inf;
resourceTime = [];
aflag = 0;
endflag = 0;
% the loop over time starts here
for t = 0:dt:10000
nextBroadcast = [];
for iUav = 1:length(uav)
% for each uav execute the coalition logic
[uav(iUav),target,targetResources,nextBroadcast, endflag] = uavlogicCentral(uav(iUav),target,dt,l,b,targetLocations,targetResources,broadcast,nextBroadcast, endflag, t);
%performance(pindex,iUav) = uav(iUav).trustValues(iUav);
end
performance(pindex,:) = Phat;
% plot uav and target positions at each time step
% if mod(t,10) == 0
% disp([t st(end)])
plotscene(uav,target,l,b)
% end
% break the loop is all targets are destroyed
if targetResources == 0 & endflag == 1
break
else
st = [st; sum(targetResources(:,1))];
% if st(end)5>st(end-1)
% keyboard;
% end
end
%disp(sum(targetResources))
broadcast = nextBroadcast;
pindex = pindex + 1;
searchf = 0;
for i = 1:length(uav)
if uav(i).Status == 'InSearch***'
searchf = searchf + 1;
end
uav(i).Position = uav(i).tempPosition;
end
if searchf == length(uav)
tarList = [];
for i = 1:length(uav)
utargets = unique(uav(i).DestroyedTargets);
for j = 1:length(utargets)
if sum(targetResources(utargets(j),:)) > 0
tarList = [tarList utargets(j)];
end
end
end
for i = 1:length(uav)
uav(i).DestroyedTargets = setdiff(uav(i).DestroyedTargets, tarList);
if(norm(uav(i).Position))> (sqrt(2)*l/2 + 100)
disp(i);
uav(i).Position = [0 0];
end
end
end
%% update the target list after checking out the resources
for itg = 1:length(target)
if (target(itg).releaseTime > 0)
if (t > target(itg).releaseTime)
target(itg).Resources = [target(itg).leftResources 0 0];
target(itg).allocatedTime = 0;
target(itg).estimatedHitTime = 0;
target(itg).releaseTime = 0;
targetResources(itg,1) = target(itg).leftResources;
% remove from the uav.destroyed target list
for iuv = 1:length(uav)
uav(iuv).DestroyedTargets = setdiff(uav(iuv).DestroyedTargets,itg);
end
end
end
end
⛄三、运行结果
⛄四、matlab版本及参考文献
1 matlab版本
2014a
2 参考文献
[1]柳寅,马良.分布式卫星系统递归式任务分配机制研究[J].计算机应用研究. 2013,30(09)
3 备注
简介此部分摘自互联网,仅供参考,若侵权,联系删除
🍅 仿真咨询
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化
2 机器学习和深度学习方面
卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
3 图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
4 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化
5 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配
6 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
7 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
8 电力系统方面
微电网优化、无功优化、配电网重构、储能配置
9 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长
10 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合