【任务分配】多无人机动态任务分配【含Matlab源码 3015期】

✅博主简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,Matlab项目合作可私信。
🍎个人主页:海神之光
🏆代码获取方式:
海神之光Matlab王者学习之路—代码获取方式
⛳️座右铭:行百里者,半于九十。

更多Matlab仿真内容点击👇
Matlab图像处理(进阶版)
路径规划(Matlab)
神经网络预测与分类(Matlab)
优化求解(Matlab)
语音处理(Matlab)
信号处理(Matlab)
车间调度(Matlab)

⛄一、多无人机动态任务分配简介

对于多无人机动态任务分配,通常采用以下策略:

任务分解:将整体任务分解为多个子任务,并确定每个子任务的优先级和要求。

任务规划:根据任务的性质和要求,以及无人机的状态和能力,利用算法进行任务规划。常用的算法包括贪婪算法、遗传算法、禁忌搜索等。

任务调度:根据任务的优先级和无人机的可用性,动态地将子任务分配给无人机。可以考虑无人机的飞行速度、续航能力、传感器负载等因素。

通信与协调:无人机之间需要进行通信和协调,以确保任务的顺利执行。可以利用无线通信技术和分布式协同算法来实现。

实时更新:在任务执行过程中,根据无人机的实时状态和环境变化,及时更新任务分配策略,以适应动态的任务需求。

⛄二、部分源代码

clear all;
global trustGain targetMeasurements targetValue targetThreshold trustFlag st Phat errorFlag
global numCoalitions numResources actualPerformance

% initialize the problem
tarIndex = 1;
nTargets = 5;
trustFlag = 1; % 0 for trusting everyone, 1 for estimating trust

[uav,target,l,b] = initializeMonte_Central(tarIndex,nTargets);
trustGain = 1/length(uav);

%targetMeasurements = rand(length(target),1);%0.7+rand(length(target),1)*0.3;
load targetMeasurements

targetMeasurements = max(0.3,targetMeasurements);

numCoalitions = 0;
numResources = 0;
% target information
targetValue =0;
targetThreshold = 0.75; % target threshold for counting the value

targetLocations = [];
targetResources = [];
for iTarget = 1:length(target)
targetLocations = [targetLocations; target(iTarget).Location];
targetResources = [targetResources; target(iTarget).Resources];
end

dt =.25; % time step
broadcast = [];
performance = zeros(1000*dt,length(uav));
pindex = 1;
st(1) = inf;
resourceTime = [];
aflag = 0;
endflag = 0;

% the loop over time starts here
for t = 0:dt:10000
nextBroadcast = [];
for iUav = 1:length(uav)
% for each uav execute the coalition logic
[uav(iUav),target,targetResources,nextBroadcast, endflag] = uavlogicCentral(uav(iUav),target,dt,l,b,targetLocations,targetResources,broadcast,nextBroadcast, endflag, t);
%performance(pindex,iUav) = uav(iUav).trustValues(iUav);
end
performance(pindex,:) = Phat;
% plot uav and target positions at each time step
% if mod(t,10) == 0
% disp([t st(end)])
plotscene(uav,target,l,b)
% end
% break the loop is all targets are destroyed
if targetResources == 0 & endflag == 1
break
else
st = [st; sum(targetResources(:,1))];
% if st(end)5>st(end-1)
% keyboard;
% end
end
%disp(sum(targetResources))
broadcast = nextBroadcast;
pindex = pindex + 1;

searchf = 0;
for i = 1:length(uav)
    if uav(i).Status == 'InSearch***'
        searchf = searchf + 1;
    end
    uav(i).Position = uav(i).tempPosition;
end
if searchf == length(uav)
    tarList = [];
    for i = 1:length(uav)
        utargets = unique(uav(i).DestroyedTargets);
        for j = 1:length(utargets)
            if sum(targetResources(utargets(j),:)) > 0
                tarList = [tarList utargets(j)];
            end
        end
    end
    for i = 1:length(uav)
        uav(i).DestroyedTargets = setdiff(uav(i).DestroyedTargets, tarList);
        if(norm(uav(i).Position))> (sqrt(2)*l/2 + 100)
            disp(i);
            uav(i).Position = [0 0];
        end
    end
end

%% update the target list after checking out the resources
for itg = 1:length(target)
    if (target(itg).releaseTime > 0)
        if (t > target(itg).releaseTime)
            target(itg).Resources = [target(itg).leftResources 0 0];
            target(itg).allocatedTime = 0;
            target(itg).estimatedHitTime = 0;
            target(itg).releaseTime = 0;
            targetResources(itg,1) = target(itg).leftResources;
            
            % remove from the uav.destroyed target list
            for iuv = 1:length(uav)
                uav(iuv).DestroyedTargets = setdiff(uav(iuv).DestroyedTargets,itg);
            end
        end
    end
end

⛄三、运行结果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

⛄四、matlab版本及参考文献

1 matlab版本
2014a

2 参考文献
[1]柳寅,马良.分布式卫星系统递归式任务分配机制研究[J].计算机应用研究. 2013,30(09)

3 备注
简介此部分摘自互联网,仅供参考,若侵权,联系删除

🍅 仿真咨询
1 各类智能优化算法改进及应用

生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化

2 机器学习和深度学习方面
卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断

3 图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知

4 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化

5 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配

6 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化

7 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化

8 电力系统方面
微电网优化、无功优化、配电网重构、储能配置

9 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长

10 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合

MATLAB是一种常用的科学计算软件,它提供了丰富的函数和工具箱,用于进行各种数值计算、模拟和数据分析等操作。在无人机编队任务分配方面,MATLAB可以很好地辅助完成任务。编队任务分配是指将多架无人机分配到不同的任务中,以实现编队协同工作。 在MATLAB中,可以使用矩阵运算和优化算法来实现编队任务分配。首先,需要将无人机和任务之间的关系建立为一个优化问题,目标函数可以是最小化任务完成时间、最大化任务效益或者平衡任务负载等。然后,可以使用线性规划、整数规划等优化算法来求解这个问题,得到最优的任务分配方案。 在编写MATLAB源码时,可以定义无人机和任务的属性和约束条件,然后将问题转化为数学模型。接着,利用MATLAB提供的优化函数,如linprog、intlinprog等,设置目标函数和约束条件,并选择合适的求解方法进行求解。最后,通过对优化结果的分析和后处理,得到最优的任务分配方案。 同时,MATLAB还提供了数据可视化的功能,可以通过绘图、动画等方式直观地展示无人机的分布和任务分配情况。这有助于对编队任务分配的结果进行评估和调整。 总而言之,使用MATLAB编写源码实现无人机编队任务分配可以提高任务分配的效率和准确性。通过优化算法和数据可视化,可以得到最优的任务分配方案。同时,MATLAB也为进一步研究和改进编队任务分配提供了便利。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值