【WSN传输】Mamdani模糊推理系统改进无线传感器网络路由和包传递【含Matlab源码 3270期】

💥💥💥💥💥💥💥💥💞💞💞💞💞💞💞💞💞Matlab武动乾坤博客之家💞💞💞💞💞💞💞💞💞💥💥💥💥💥💥💥💥
🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀
在这里插入图片描述
🔊博主简介:985研究生,Matlab领域科研开发者;

🚅座右铭:行百里者,半于九十。

🏆代码获取方式:
CSDN Matlab武动乾坤—代码获取方式

更多Matlab信号处理仿真内容点击👇
Matlab信号处理(进阶版)

⛳️关注CSDN Matlab武动乾坤,更多资源等你来!!

⛄一、 Mamdani模糊推理系统改进无线传感器网络路由和包传递

1 Mamdani模糊推理系统
Mamdani模糊推理系统是一种基于模糊逻辑的推理方法,它是由Lotfi A. Zadeh在1975年提出的。该方法将模糊集合理论应用于控制系统中,以便更好地处理模糊信息。Mamdani模糊推理系统的输入和输出都是模糊集合,其中输入模糊集合通过一组模糊规则映射到输出模糊集合。这些规则通常采用IF-THEN形式表示,其中IF部分是输入模糊集合的组合,THEN部分是输出模糊集合的组合。Mamdani模糊推理系统的输出是通过对所有规则的THEN部分进行加权平均得到的。

2 Mamdani模糊推理系统步骤
Mamdani模糊推理系统步骤如下:
(1)定义输入变量和它们的隶属度函数。
(2)定义输出变量和它们的隶属度函数。
(3)定义模糊规则,将输入变量和输出变量联系起来。
(4)使用Mamdani模糊推理系统进行推理。根据环境信息的模糊变量和定义的模糊规则,推理系统可以确定最适合的路由和数据包传递策略。
(5)去模糊化。根据推理得到的模糊结论,执行去模糊化操作,将模糊结论转化为具体的动作。常用的去模糊化方法包括最大隶属度法、重心法等。

3 Mamdani模糊推理系统改进无线传感器网络路由和包传递
Mamdani模糊推理系统是一种基于模糊逻辑的决策方法,可以用于改进无线传感器网络(WSN)的路由和数据包传递。在WSN中,节点之间的通信受到信道不稳定性和干扰的影响,因此需要一种优化路由决策和数据包传输的方法。Mamdani模糊推理系统可以通过定义合适的模糊规则和使用模糊推理进行决策,优化节点之间的通信质量和数据包传输方式。此外,通过动态调整模糊规则和推理过程,可以实现WSN的自适应路由和包传递。这些方法可以提高WSN的性能和效率,推动WSN在各个领域的应用。

⛄二、部分源代码

clc;
clear all;
close all;
%% Making Network:
global position N
N=50; % Number of Nodes in network
position=randsrc(2,N,1:1000); % set position of each node in network 1000x1000 meters
S=1; % Source Node
D=50; % Destination Node
Net=zeros(N);
range=250; % Radio propagation range of each node (meter)
plot(position(1,:),position(2,:),‘ro’);
title(‘Network’);
xlabel(‘x (m)’);
ylabel(‘y (m)’);
grid();
hold on

for i=1:N
for j=1:N
if i~=j && dist(position(:,i)',position(:,j))<=range
Net(i,j)=1; %Connection between 2 nodes (i,j)
line([position(1,i),position(1,j)],[position(2,i),position(2,j)]);
end
end
end
plot(position(1,S),position(2,S),‘ks’);
plot(position(1,D),position(2,D),‘g^’);
%% Route Discovery:
for i=1:30
path=S;
tik=zeros(1,N);
tik(S)=1;
while (1)
a=find(Net(path(end),:)==1);
b=a(tik(a)==0);
if isempty(b)==1
break;
end
next=randsrc(1,1,b);
if tik(next)==0
path=[path,next];
tik(next)=1;
end
if path(end)==D
routePool{i}=path;
break;
end
end
end
j=1;
for i=1:numel(routePool)
if isempty(routePool{i})==0
Pool{j}=routePool{i};
j=j+1;
end

⛄三、运行结果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

⛄四、matlab版本及参考文献

1 matlab版本
2014a

2 参考文献
[1]李玲纯,高来鑫.改进磷虾群算法在变电站选址中的应用[J].重庆工商大学学报(自然科学版). 2018,35(03)

3 备注
简介此部分摘自互联网,仅供参考,若侵权,联系删除

🍅 仿真咨询
1 各类智能优化算法改进及应用

生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化

2 机器学习和深度学习方面
卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断

3 图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知

4 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化

5 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配

6 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化

7 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化

8 电力系统方面
微电网优化、无功优化、配电网重构、储能配置

9 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长

10 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值