💥💥💥💥💥💥💥💥💞💞💞💞💞💞💞💞💞Matlab武动乾坤博客之家💞💞💞💞💞💞💞💞💞💥💥💥💥💥💥💥💥
🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀
🔊博主简介:985研究生,Matlab领域科研开发者;
🚅座右铭:行百里者,半于九十。
🏆代码获取方式:
CSDN Matlab武动乾坤—代码获取方式
更多Matlab优化求解仿真内容点击👇
①Matlab优化求解(进阶版)
⛳️关注CSDN Matlab武动乾坤,更多资源等你来!!
⛄一、飞蛾扑火算法
飞蛾扑火优化算法(Moth-Flame Optimization,MFO)是澳大利亚学者Seyedali Mirjalili于2015年提出的一种受自然生物启发的智能优化算法,该算法的主要灵感来自于飞蛾被称为“横定向”的导航方法。飞蛾在夜间飞行时相对于月亮保持一个固定的角度,这是一种非常有效的远距离直线飞行机制,但是在人造光周围,飞蛾却容易陷入致命的螺旋路径。
1 灵感
飞蛾最有趣的是它们在夜间的特殊导航方式,它们已经进化到可以利用月光在夜间飞行,这种导航方式叫做横定向。飞蛾飞行时相对于月亮保持一个固定的角度,如图1所示。由于月亮离飞蛾很远,这种机制保证了飞蛾的直线飞行。
尽管有横定向有一定的作用,但是我们通常观察到蛾子绕着灯光盘旋飞行。事实上,蛾子容易被人造光所欺骗而表现出这样的行为,这是因为只有在光源非常远的情况下横定向才有利于直线移动。当飞蛾看到人造光源时,它们会试图与光源保持相似的角度,以保持直线飞行。然而,由于这种光线与月亮相比非常接近,因此与光源保持类似的角度会导致飞蛾产生无用或致命的螺旋飞行路径。可以看出,蛾子最终会向光线靠拢,作者将这种行为进行数学建模,提出飞蛾扑火优化算法。
⛄二、部分源代码
%%%%%%%%%%%%%基于飞蛾扑火算法的WSN覆盖问题%%%%%%%%%%%%%
tic % 计时器
%% 清空环境变量
clc
clear
close all
warning off
% rng(1)
%% 参数设置
FoodNumber=30; % 狼群数量,Number of search agents
Max_iteration=100; % 最大迭代次数,Maximum numbef of iterations
dim=35;
objfun=‘WSNcover’;
w=100;% 边界宽
R=12;
lb=ones(1,dim)(0); % 参数取值下界
ub=ones(1,dim)w; % 参数取值上界
d1ss=[];
d2ss=[];
d3ss=[];
d4ss=[];
for idx=1:50
Range = repmat((ub-lb),[FoodNumber 1]); % 20行45列的矩阵,元素全部为100
Lower = repmat(lb, [FoodNumber 1]); % 20行45列的矩阵,元素全部为0
Moth_posX = rand(FoodNumber,dim) . Range + Lower; % 20行45列的矩阵,元素为0-100之间的随机数
Moth_posY = rand(FoodNumber,dim) . Range + Lower; % 一样
[Alpha_score_MFO,Alpha_posX_MFO,Alpha_posY_MFO,Convergence_curve_MFO]=MFO(FoodNumber,Max_iteration,lb,ub,dim,objfun,10,w,Moth_posX,Moth_posY);
[Alpha_score_IMFO,Alpha_posX_IMFO,Alpha_posY_IMFO,Convergence_curve_IMFO]=IMFO(FoodNumber,Max_iteration,lb,ub,dim,objfun,R,w,Moth_posX,Moth_posY);
disp(‘打印结果’);
fprintf(‘MFO算法优化后的最佳覆盖率为 %8.5f\n’, Alpha_score_MFO);
fprintf(‘IMFO算法优化后的最佳覆盖率为 %8.5f\n’, Alpha_score_IMFO);
d1s=[];
d2s=[];
for i=1:size(Moth_posX,1)
d1=sum(sqrt((Moth_posX(i,:)-Alpha_posX_MFO).2+(Moth_posY(i,:)-Alpha_posY_MFO).2))/size(Moth_posX,2);
d2=sum(sqrt((Moth_posX(i,:)-Alpha_posX_IMFO).2+(Moth_posY(i,:)-Alpha_posY_IMFO).2))/size(Moth_posX,2);
d1s=[d1s d1];
d2s=[d2s d2];
end
⛄三、运行结果
⛄四、matlab版本及参考文献
1 matlab版本
2014a
2 参考文献
[1]尹向兵,吴良超.基于周期果蝇算法的无线传感网覆盖优化[J].赤峰学院学报(自然科学版). 2017,33(16)
[2]王欣阳,王瑞阳,魏云冰.基于算术优化算法的低压配电网故障区段定位方法[J].电子科技.
3 备注
简介此部分摘自互联网,仅供参考,若侵权,联系删除
🍅 仿真咨询
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化
2 机器学习和深度学习方面
卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
3 图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
4 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化
5 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配
6 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
7 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
8 电力系统方面
微电网优化、无功优化、配电网重构、储能配置
9 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长
10 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合