【无人机对抗】无人机红蓝对抗仿真【含Matlab源码 4436期】

✅博主简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,Matlab项目合作可私信。
🍎个人主页:海神之光
🏆代码获取方式:
海神之光Matlab王者学习之路—代码获取方式
⛳️座右铭:行百里者,半于九十。

更多Matlab仿真内容点击👇
Matlab图像处理(进阶版)
路径规划(Matlab)
神经网络预测与分类(Matlab)
优化求解(Matlab)
语音处理(Matlab)
信号处理(Matlab)
车间调度(Matlab)

⛄一、无人机红蓝对抗仿真简介

1 无人机空战动力学模型
在惯性坐标系中建立飞机三自由度运动模型,并用质点模型描述无人机的运动学方程为
在这里插入图片描述
为了简化,假设飞机在无侧滑中飞行,同时推力矢量方向、速度矢量方向及机头指向3者始终保持一致,则在航迹坐标系中无人机的动力学方程为
在这里插入图片描述
式中:分别为无人机的质心在惯性系中的坐标;为机体坐标系中无人机的速度大小;分别为惯性系坐标系中无人机的俯仰角、偏航角;为无人机的重力加速度;分别为切向过载、法向过载以及由升降舵和副翼耦合控制的滚转角。切向过载与无人机的阻力和油门控制的发动机的推力有关,其方向为机身对称面内垂直于机头方向。因此,该模型的状态向量为,控制向量为。

2 空战态势评估模型
2.1 角度优势函数
设角度优势函数为,表达式为
在这里插入图片描述
式中:下表为的代表红机参数,下标为的代表蓝机参数。是蓝机观测的滞后角,即蓝红两机连线与蓝机的速度方向的夹角;是蓝机观测的超前角,即蓝红两机连线与红机的速度方向的夹角。

2.2 距离优势函数
设距离优势函数为。假设无人机的不可逃逸区为,代表不可逃逸区距离下界,代表上界,只有当两机距离时无人机的攻击才有可能击中目标。在这里插入图片描述
当敌机处于我机攻击的不可逃逸区之内时,距离优势函数取得最大值1,当超出攻击不可逃逸区时距离优势关于两机距离呈正态分布。

2.3 速度优势函数
设速度优势函数为。在定义速度优势函数前首先要定义无人机最佳攻击速度,当敌机处于我机攻击不可逃逸区之内时,最佳攻击速度取敌机速度(这里假设我方是红机,敌方是蓝机),当敌机处于攻击不可逃逸区之外时应进行加速或者减速来使敌机尽快进入不可逃逸区,因此表示为
则速度优势函数可以表示为

2.4 高度优势函数
设高度优势函数为,设敌我双方无人机的高度差为
在这里插入图片描述

为了占据攻击即发射导弹时的高度优势,我机必然要提升,设定最佳高度差是一段区间,当处于该区间时高度优势函数均取得最大值1。因此,高度优势函数表达式为
在这里插入图片描述

综上,综合分析角度、距离、速度、高度四种优势函数,无人机空战的综合优势函数为
在这里插入图片描述
式中分别代表角度、距离、速度、高度4种优势函数的权重。

3 无人机机动动作库
根据无人机的飞行状态,7种基本机动动作,组成无人机的机动动作库,分别为匀速平飞、最大过载加速、最大过载减速、最大过载爬升、最大过载俯冲、最大过载左转弯、最大过载右转弯。
表1 机动动作库
在这里插入图片描述

4 无人机红蓝对抗仿真原理
无人机红蓝对抗仿真是指模拟无人机的红方和蓝方进行对抗的仿真过程。其中红方代表敌方,蓝方代表我方。这种仿真可以帮助人们更好地了解无人机的使用和应用场景,同时也可以评估不同无人机系统的性能和优劣。

在无人机红蓝对抗仿真中,通常会涉及到多个无人机的协同作战,包括侦察、攻击等任务。通过对不同场景、条件下的模拟测试,可以得到无人机系统在实际应用中的表现情况,从而指导无人机系统的研发和应用。

具体而言,无人机红蓝对抗仿真可以通过虚拟化技术实现,即利用计算机模拟实际战场环境。在仿真中,可以设定不同的任务、条件和敌我双方的行为方式,观察无人机系统的表现,并进行评估。通过多次测试和优化,可以提高无人机系统的性能和应用效果。

⛄二、部分源代码

clear;close;
%% 2v2 air combat
% 用于 2v2 air combat
% 假定红蓝双方各两架无人机,记为R1,R2;B1,B2
% 其初始状态记为R1_0,R2_0;B1_0,B2_0;整个过程状态量记为R1_s,R2_s;B1_s,B2_s
% 机动决策库为{左偏置;稳定飞行;最大加速;最大减速;右偏置;爬升;俯冲}

%% 参数设置
dt = 0.25; % 仿真步长
dT = 10 * dt; % 决策步长
sim_t = 120; % 总仿真时长
odeSolver = @ode45; % 微分求解器

R1_0 = [0; 1000; 5000; 500; 0; -pi/2];
R2_0 = [0; 0; 5000; 500; 0; -pi/2];
B1_0 = [5000; 1000; 6000; 500; 0; -pi/2];
B2_0 = [4000; 0; 6000; 500; 0; -pi/2]; % 红蓝两方初始状态

global g nx_max nf_max sigma1 sigma2 R_max R_min V_min V_max h sigmah
global sigmah1 sigmah2 omega_A omega_R omega_v omega_h

g = 9.81; % 重力系数
nx_max = 8 ; % 最大切向过载
nf_max = 3 ; % 最大法向过载

sigma1 = 100; % 距离优势函数参数 m
sigma2 = 1000; % 距离优势函数参数 m
R_max = 1000; % 最大攻击距离 m
R_min = 500; % 最小攻击距离 m
V_max = 800; % 最大速度 m/s
V_min = 300; % 最小速度 m/s
h = 200; % 最佳高度差 m
sigmah = 100; % 高度优势函数参数 m
sigmah1 = 100; % 高度优势函数参数 m
sigmah2 = 1000; % 高度优势函数参数 m
omega_A = 1; % 角度优势函数权重
omega_R = 1; % 距离优势函数权重
omega_v = 1; % 速度优势函数权重
omega_h = 1; % 高度优势函数权重

%%

total_k = ceil(sim_t / dt); % 总步数
t = 0;
R1 = R1_0;
R2 = R2_0;
B1 = B1_0;
B2 = B2_0;

% 设置变量预存
AR11_s = zeros(total_k,1);
AR12_s = zeros(total_k,1);
AR21_s = zeros(total_k,1);
AR22_s = zeros(total_k,1);
AB11_s = zeros(total_k,1);
AB12_s = zeros(total_k,1);
AB21_s = zeros(total_k,1);
AB22_s = zeros(total_k,1);

R1_s = zeros(total_k,6);
R2_s = zeros(total_k,6);
B1_s = zeros(total_k,6);
B2_s = zeros(total_k,6);
R1_T = zeros(total_k,1);
R2_T = zeros(total_k,1);
B1_T = zeros(total_k,1);
B2_T = zeros(total_k,1);

R1_u_s = zeros(total_k,3);
R2_u_s = zeros(total_k,3);
B1_u_s = zeros(total_k,3);
B2_u_s = zeros(total_k,3);

t_s = zeros(total_k,1);

% 设置初值
t_s(1) = t;
AR11_s(1) = advantage(R1,B1);
AR12_s(1) = advantage(R1,B2);
AR21_s(1) = advantage(R2,B1);
AR22_s(1) = advantage(R2,B2);
AB11_s(1) = advantage(B1,R1);
AB12_s(1) = advantage(B1,R2);
AB21_s(1) = advantage(B2,R1);
AB22_s(1) = advantage(B2,R2);

R1_s(1,:) = R1’;
R2_s(1,:) = R2’;
B1_s(1,:) = B1’;
B2_s(1,:) = B2’;

R1_T(1) = 2;
R2_T(1) = 2;
B1_T(1) = 2;
B2_T(1) = 2;

% B1_u = [0 1 0];
% B2_u = [0 1 0]; % 假设蓝方为匀速直线

for k = 1:total_k-1
t;

[R1_t,tr1] = target(R1,B1,B2);
R1_T(k+1) = tr1;
R1_u = controller(R1,R1_t,dT);
R1_u_s(k, :) = R1_u;

[R2_t,tr2] = target(R2,B1,B2);
R2_T(k+1) = tr2;
R2_u = controller(R2,R2_t,dT);
R2_u_s(k, :) = R2_u;

[B1_t,tb1] = target(B1,R1,R2);
B1_T(k+1) = tb1;
B1_u = controller(B1,B1_t,dT);
B1_u_s(k, :) = B1_u;

[B2_t,tb2] = target(B2,R1,R2);
B2_T(k+1) = tb2;
B2_u = controller(B2,B2_t,dT);
B2_u_s(k, :) = B2_u;  

⛄三、运行结果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

⛄四、matlab版本及参考文献

1 matlab版本
2014a

2 参考文献
[1]肖宇.基于互补滤波算法的四旋翼飞行器姿态和高度解算[J].中国设备工程. 2020,(06)

3 备注
简介此部分摘自互联网,仅供参考,若侵权,联系删除

🍅 仿真咨询
1 各类智能优化算法改进及应用

1.1 PID优化
1.2 VMD优化
1.3 配电网重构
1.4 三维装箱
1.5 微电网优化
1.6 优化布局
1.7 优化参数
1.8 优化成本
1.9 优化充电
1.10 优化调度
1.11 优化电价
1.12 优化发车
1.13 优化分配
1.14 优化覆盖
1.15 优化控制
1.16 优化库存
1.17 优化路由
1.18 优化设计
1.19 优化位置
1.20 优化吸波
1.21 优化选址
1.22 优化运行
1.23 优化指派
1.24 优化组合
1.25 车间调度
1.26 生产调度
1.27 经济调度
1.28 装配线调度
1.29 水库调度
1.30 货位优化
1.31 公交排班优化
1.32 集装箱船配载优化
1.33 水泵组合优化
1.34 医疗资源分配优化
1.35 可视域基站和无人机选址优化

2 机器学习和深度学习分类与预测
2.1 机器学习和深度学习分类
2.1.1 BiLSTM双向长短时记忆神经网络分类
2.1.2 BP神经网络分类
2.1.3 CNN卷积神经网络分类
2.1.4 DBN深度置信网络分类
2.1.5 DELM深度学习极限学习机分类
2.1.6 ELMAN递归神经网络分类
2.1.7 ELM极限学习机分类
2.1.8 GRNN广义回归神经网络分类
2.1.9 GRU门控循环单元分类
2.1.10 KELM混合核极限学习机分类
2.1.11 KNN分类
2.1.12 LSSVM最小二乘法支持向量机分类
2.1.13 LSTM长短时记忆网络分类
2.1.14 MLP全连接神经网络分类
2.1.15 PNN概率神经网络分类
2.1.16 RELM鲁棒极限学习机分类
2.1.17 RF随机森林分类
2.1.18 SCN随机配置网络模型分类
2.1.19 SVM支持向量机分类
2.1.20 XGBOOST分类

2.2 机器学习和深度学习预测
2.2.1 ANFIS自适应模糊神经网络预测
2.2.2 ANN人工神经网络预测
2.2.3 ARMA自回归滑动平均模型预测
2.2.4 BF粒子滤波预测
2.2.5 BiLSTM双向长短时记忆神经网络预测
2.2.6 BLS宽度学习神经网络预测
2.2.7 BP神经网络预测
2.2.8 CNN卷积神经网络预测
2.2.9 DBN深度置信网络预测
2.2.10 DELM深度学习极限学习机预测
2.2.11 DKELM回归预测
2.2.12 ELMAN递归神经网络预测
2.2.13 ELM极限学习机预测
2.2.14 ESN回声状态网络预测
2.2.15 FNN前馈神经网络预测
2.2.16 GMDN预测
2.2.17 GMM高斯混合模型预测
2.2.18 GRNN广义回归神经网络预测
2.2.19 GRU门控循环单元预测
2.2.20 KELM混合核极限学习机预测
2.2.21 LMS最小均方算法预测
2.2.22 LSSVM最小二乘法支持向量机预测
2.2.23 LSTM长短时记忆网络预测
2.2.24 RBF径向基函数神经网络预测
2.2.25 RELM鲁棒极限学习机预测
2.2.26 RF随机森林预测
2.2.27 RNN循环神经网络预测
2.2.28 RVM相关向量机预测
2.2.29 SVM支持向量机预测
2.2.30 TCN时间卷积神经网络预测
2.2.31 XGBoost回归预测
2.2.32 模糊预测
2.2.33 奇异谱分析方法SSA时间序列预测

2.3 机器学习和深度学习实际应用预测
CPI指数预测、PM2.5浓度预测、SOC预测、财务预警预测、产量预测、车位预测、虫情预测、带钢厚度预测、电池健康状态预测、电力负荷预测、房价预测、腐蚀率预测、故障诊断预测、光伏功率预测、轨迹预测、航空发动机寿命预测、汇率预测、混凝土强度预测、加热炉炉温预测、价格预测、交通流预测、居民消费指数预测、空气质量预测、粮食温度预测、气温预测、清水值预测、失业率预测、用电量预测、运输量预测、制造业采购经理指数预测

3 图像处理方面
3.1 图像边缘检测
3.2 图像处理
3.3 图像分割
3.4 图像分类
3.5 图像跟踪
3.6 图像加密解密
3.7 图像检索
3.8 图像配准
3.9 图像拼接
3.10 图像评价
3.11 图像去噪
3.12 图像融合
3.13 图像识别
3.13.1 表盘识别
3.13.2 车道线识别
3.13.3 车辆计数
3.13.4 车辆识别
3.13.5 车牌识别
3.13.6 车位识别
3.13.7 尺寸检测
3.13.8 答题卡识别
3.13.9 电器识别
3.13.10 跌倒检测
3.13.11 动物识别
3.13.12 二维码识别
3.13.13 发票识别
3.13.14 服装识别
3.13.15 汉字识别
3.13.16 红绿灯识别
3.13.17 虹膜识别
3.13.18 火灾检测
3.13.19 疾病分类
3.13.20 交通标志识别
3.13.21 卡号识别
3.13.22 口罩识别
3.13.23 裂缝识别
3.13.24 目标跟踪
3.13.25 疲劳检测
3.13.26 旗帜识别
3.13.27 青草识别
3.13.28 人脸识别
3.13.29 人民币识别
3.13.30 身份证识别
3.13.31 手势识别
3.13.32 数字字母识别
3.13.33 手掌识别
3.13.34 树叶识别
3.13.35 水果识别
3.13.36 条形码识别
3.13.37 温度检测
3.13.38 瑕疵检测
3.13.39 芯片检测
3.13.40 行为识别
3.13.41 验证码识别
3.13.42 药材识别
3.13.43 硬币识别
3.13.44 邮政编码识别
3.13.45 纸牌识别
3.13.46 指纹识别

3.14 图像修复
3.15 图像压缩
3.16 图像隐写
3.17 图像增强
3.18 图像重建

4 路径规划方面
4.1 旅行商问题(TSP)
4.1.1 单旅行商问题(TSP)
4.1.2 多旅行商问题(MTSP)
4.2 车辆路径问题(VRP)
4.2.1 车辆路径问题(VRP)
4.2.2 带容量的车辆路径问题(CVRP)
4.2.3 带容量+时间窗+距离车辆路径问题(DCTWVRP)
4.2.4 带容量+距离车辆路径问题(DCVRP)
4.2.5 带距离的车辆路径问题(DVRP)
4.2.6 带充电站+时间窗车辆路径问题(ETWVRP)
4.2.3 带多种容量的车辆路径问题(MCVRP)
4.2.4 带距离的多车辆路径问题(MDVRP)
4.2.5 同时取送货的车辆路径问题(SDVRP)
4.2.6 带时间窗+容量的车辆路径问题(TWCVRP)
4.2.6 带时间窗的车辆路径问题(TWVRP)
4.3 多式联运运输问题

4.4 机器人路径规划
4.4.1 避障路径规划
4.4.2 迷宫路径规划
4.4.3 栅格地图路径规划

4.5 配送路径规划
4.5.1 冷链配送路径规划
4.5.2 外卖配送路径规划
4.5.3 口罩配送路径规划
4.5.4 药品配送路径规划
4.5.5 含充电站配送路径规划
4.5.6 连锁超市配送路径规划
4.5.7 车辆协同无人机配送路径规划

4.6 无人机路径规划
4.6.1 飞行器仿真
4.6.2 无人机飞行作业
4.6.3 无人机轨迹跟踪
4.6.4 无人机集群仿真
4.6.5 无人机三维路径规划
4.6.6 无人机编队
4.6.7 无人机协同任务
4.6.8 无人机任务分配

5 语音处理
5.1 语音情感识别
5.2 声源定位
5.3 特征提取
5.4 语音编码
5.5 语音处理
5.6 语音分离
5.7 语音分析
5.8 语音合成
5.9 语音加密
5.10 语音去噪
5.11 语音识别
5.12 语音压缩
5.13 语音隐藏

6 元胞自动机方面
6.1 元胞自动机病毒仿真
6.2 元胞自动机城市规划
6.3 元胞自动机交通流
6.4 元胞自动机气体
6.5 元胞自动机人员疏散
6.6 元胞自动机森林火灾
6.7 元胞自动机生命游戏

7 信号处理方面
7.1 故障信号诊断分析
7.1.1 齿轮损伤识别
7.1.2 异步电机转子断条故障诊断
7.1.3 滚动体内外圈故障诊断分析
7.1.4 电机故障诊断分析
7.1.5 轴承故障诊断分析
7.1.6 齿轮箱故障诊断分析
7.1.7 三相逆变器故障诊断分析
7.1.8 柴油机故障诊断

7.2 雷达通信
7.2.1 FMCW仿真
7.2.2 GPS抗干扰
7.2.3 雷达LFM
7.2.4 雷达MIMO
7.2.5 雷达测角
7.2.6 雷达成像
7.2.7 雷达定位
7.2.8 雷达回波
7.2.9 雷达检测
7.2.10 雷达数字信号处理
7.2.11 雷达通信
7.2.12 雷达相控阵
7.2.13 雷达信号分析
7.2.14 雷达预警
7.2.15 雷达脉冲压缩
7.2.16 天线方向图
7.2.17 雷达杂波仿真

7.3 生物电信号
7.3.1 肌电信号EMG
7.3.2 脑电信号EEG
7.3.3 心电信号ECG
7.3.4 心脏仿真

7.4 通信系统
7.4.1 DOA估计
7.4.2 LEACH协议
7.4.3 编码译码
7.4.4 变分模态分解
7.4.5 超宽带仿真
7.4.6 多径衰落仿真
7.4.7 蜂窝网络
7.4.8 管道泄漏
7.4.9 经验模态分解
7.4.10 滤波器设计
7.4.11 模拟信号传输
7.4.12 模拟信号调制
7.4.13 数字基带信号
7.4.14 数字信道
7.4.15 数字信号处理
7.4.16 数字信号传输
7.4.17 数字信号去噪
7.4.18 水声通信
7.4.19 通信仿真
7.4.20 无线传输
7.4.21 误码率仿真
7.4.22 现代通信
7.4.23 信道估计
7.4.24 信号检测
7.4.25 信号融合
7.4.26 信号识别
7.4.27 压缩感知
7.4.28 噪声仿真
7.4.29 噪声干扰

7.5 无人机通信

7.6 无线传感器定位及布局方面
7.6.1 WSN定位
7.6.2 高度预估
7.6.3 滤波跟踪
7.6.4 目标定位
7.6.4.1 Dv-Hop定位
7.6.4.2 RSSI定位
7.6.4.3 智能算法优化定位
7.6.5 组合导航

8 电力系统方面
微电网优化、无功优化、配电网重构、储能配置

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值