【数字信号处理】N路信号频分复用系统【含Matlab源码 4502期】

💥💥💥💥💥💥💥💥💞💞💞💞💞💞💞💞💞Matlab武动乾坤博客之家💞💞💞💞💞💞💞💞💞💥💥💥💥💥💥💥💥
🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀
在这里插入图片描述
🔊博主简介:985研究生,Matlab领域科研开发者;

🚅座右铭:行百里者,半于九十。

🏆代码获取方式:
CSDN Matlab武动乾坤—代码获取方式

更多Matlab信号处理仿真内容点击👇
Matlab信号处理(进阶版)

⛳️关注CSDN Matlab武动乾坤,更多资源等你来!!

⛄一、N路信号频分复用系统简介

1 引言
随着现代通信技术日新月异的发展,通信技术愈来愈重要。通信原理更是电子信息专业的一门重要的专业基础课程,它以各种通信系统的基本理论为研究对象,与实际应用密切联系,又具有很强的理论性和抽象性,需要应用概率论、随机过程、信号与系统、模拟与数字电路等多门课程知识为基础。因而在应用设计中比较困难。然而MATLAB(matrix&laboratory)是一种用于概念设计、算法开发、建模仿真、实时实现的科学计算软件,它将高性能的数值计算和可视化方法集成在一起,并提供了很多专业工具箱和大量的内置函数。自从90年代初在我国引入后,一直受到广大科研人员和技术工程师的喜爱,随着版本的不断更新和MathWorks公司在开发力度上的不断加大,MATLAB的功能日益强大,应用范围也越来越广阔,从最初的数值运算,二维图示,3D建模到数字信号处理,电子电力仿真,神经网络,航空航天,通信仿真,图像处理,控制工程等等几乎囊括了所有工程设计的方方面面。因而,此次课程设计选择用MATLAB进行N路信号频分复用系统的设计。

2 设计内容及要求
2.1设计内容

题目:N路信号占用频分复用系统的设计与建模;
1)每路信号占用带宽尽可能窄:信道总带宽20KHZ;
2)SSB-FDM-FM方式;
3)3路信号,频率300HZ~3400HZ;
4)保护带宽1HZ;
2.2 设计要求
1)设定噪声类型和参数,且参数方便可调;
2)设3个观测点,分别观察SSB,FDM,FM信号;
3)设定载频;
4)完成发送端和接收端的仿真,观察收到的信号,分析结果
3 设计思路
基于MATLAB的N路信号频分复用系统的设计,详细过程如下:
(1)产生三路正弦信号并显示时域波形和频谱图,信号的频率分别为1khz,2khz,3khz;
(2)对信号进行两路SSB和一路FM进行调制并显示其时域波形和频谱图,载频分别为10khz,20khz,30khz;
(3)将高斯白噪声分别叠加到调制后三路信号并显示(直接相加),SNR=50;
(4)对不加噪声的三路调制信号及加噪声的三路调制信号分别进行叠加,用相加器即可;
(5)切比雪夫二型带通滤波器的设计,具体参数下文中可得;
(6)对由带通滤波器滤出后的三路信号分别进行解调;
(7)最后将解调后的三路信号经由低通滤波器恢复出基带信号,与原始信号进行比较分析。

4 设计原理以及方案
4.1频分复用通信系统模型建立

FDMA通信系统核心的思想是频分复用(FDM),复用是一种将若干个彼此独立的信号合并为一个可在同一个信道上传送的复合信号的方法。例如在电话通信系统中,语音信号频谱在300—3400Hz内,而一条干线的通信资源往往远大于传送一路语音信号所需的带宽。这时,如果用一条干线只传一路语音信号会使资源大大的浪费,所以常用的方法是“复用”,使一条干线上同时传输几路电话信号,提高资源利用率。
频分复用(FDM)是信道复用按频率区分信号,即将信号资源划分为多个子频带,每个子频带占用不同的频率,如图(1)所示。然后把需要在同一信道上同时传输的多个信号的频谱调制到不同的频带上,合并在一起不会相互影响,并且能再接收端彼此分离开。

4.2 滤波器的设计及方案
4.2.1 切比雪夫二型带通滤波器
1).设计思路

(1)数字—模拟指标转换。利用双线性变换的频率预畸变公式,把所要求的数字滤波器数字频率指标转换为相应的模拟滤波器的模拟频率指标。
(2)低通模拟指标转换。将模拟滤波器的频率指标归一化原型低通滤波器的频率指标。
(3)模拟滤波器的设计,得到低通滤波器的归一化传输函数。
(4)模拟频率变换,将模拟低通滤波器归一化传输函数转换成所需要的模拟滤波器传输函数。
(5)模拟—数字滤波器变换。利用双线性变换得到所要求的数字滤波器传输函数。
2).设计要求及方案
此次课程设计需要用到三个带通切比雪夫滤波器,下面仅以一个来进行说明,设计一带通切比雪夫II型的滤波器,要求如下:
(1)通带上下边沿频率分别为fp1=90000 Hz和fp2=12000 Hz;
(2)通带最大衰减Rp=0.5;
(3)阻带上下边沿频率分别为fs1=80000Hz和fs2=13000 Hz;
(4)阻带最小衰减 Rs=40,采样频率fs=10 KHz ;
(5)相应的数字频率如下:
Wp1=23.14 (fp1/fs); Wp2=23.14 (fp2/fs);
Ws1=23.14 (fs1/fs); Ws2=23.14 (fs2/fs);
最后利用MATLAB一步编写切比雪夫II型带通数字滤波器,详细程序见附录代码。

4.2.2 切比雪夫二型低通滤波器
此次课程设计用到的低通滤波器,因为三路信号的频率分别不同,因而需要设计三个切比雪夫二型低通滤波器,又因为此次需要的不是理想的低通滤波器,因而切比雪夫二型低通滤波器的设计原理同切比雪夫二型带通滤波器相似,知识通带和阻带的频率不同,这里不再加以阐述。

4.3信号的调制和解调的原理及方案
4.3.1信号的调制

调制在通信过程中起着极其重要的作用:无线电通信是通过空间辐射方式传输信号的,调制过程可以将信号的频谱搬移到容易一电磁波形式辐射的较高频范围;此外,调制过程可以将不同的信号通过频谱搬移托付至不同频率的载波上,实现多路复用,不至于互相干扰。

4.3.2 信号的解调
解调是调制的反过程。即:把低频信号从高频段搬移下来,还原被传送的低频信号。单边带解调不能采用包络检波,通常采用相干解调。此次的设计中,对于滤出信号的解调均采用相干解调,对于相干解调的说明如下:
相干解调(Coherent Demodulation),所谓相干,泛泛地说就是相互干扰;相干解调是指利用乘法器,输入一路信号与载频相干(同频同相)的参考信号与载频相乘。即在接收端,分析已调信号的频谱,进而对它进行解调,以恢复原调制信号。

⛄二、部分源代码

clc;
%%%正弦信号的产生
fs=30000;%采样频率
t=(0:1/fs:0.005);%图形坐标轴设计
f1=1000;f2=2000;f3=3000;%正弦信号频率
s1=sin(2pif1t);%产生正弦信号
s2=sin(2
pif2t);
s3=sin(2pif3*t);
figure(1)
subplot(3,2,1);plot(t,s1);xlabel(‘单位:s’);ylabel(‘幅度’);title(‘正弦信号1’);%显示正弦信号图形
subplot(3,2,3);plot(t,s2);xlabel(‘单位:s’);ylabel(‘幅度’);title(‘正弦信号2’);
subplot(3,2,5);plot(t,s3);xlabel(‘单位:s’);ylabel(‘幅度’);title(‘正弦信号3’);
%%%频域分析
N=1024;
Y1=fft(s1,N);Y1=fftshift(Y1);%快速傅里叶变换得出频谱函数
Y2=fft(s2,N);Y2=fftshift(Y2);
Y3=fft(s3,N);Y3=fftshift(Y3);
f=(0:N-1)*fs/N-fs/2;
subplot(3,2,2);plot(f,abs(Y1));xlabel(‘单位:HZ’);ylabel(‘幅度’);title(‘函数频谱图1’);
subplot(3,2,4);plot(f,abs(Y2));xlabel(‘单位:HZ’);ylabel(‘幅度’);title(‘函数频谱图2’);
subplot(3,2,6);plot(f,abs(Y3));xlabel(‘单位:HZ’);ylabel(‘幅度’);title(‘函数频谱图3’);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%SSB调制
fc1=10000;fc2=20000;fc3=30000;fs1=100000;
sm1 = modulate(s1,fc1,fs1,‘amssb’); %对信号进行SSB调制
sm2 = modulate(s2,fc2,fs1,‘amssb’); %对信号进行SSB调制
sfm3 = modulate(s3,fc3,fs1,‘FM’); %对信号进行FM调制
figure(2)
subplot(3,2,1);plot(t,sm1);xlabel(‘单位:s’);ylabel(‘幅度’);title(‘SSB1’);
subplot(3,2,3);plot(t,sm2);xlabel(‘单位:s’);ylabel(‘幅度’);title(‘SSB2’);
subplot(3,2,5);plot(t,sfm3);xlabel(‘单位:s’);ylabel(‘幅度’);title(‘FM3’);
%%%SSB调制的频域分析
F1=fft(sm1,N);F1=fftshift(F1);
F2=fft(sm2,N);F2=fftshift(F2);
FM3=fft(sfm3,N);FM3=fftshift(FM3);
f1=(0:N-1)*fs1/N-fs1/2;
subplot(3,2,2);plot(f1,abs(F1));xlabel(‘单位:HZ’);ylabel(‘幅度’);title(‘SSB频谱图1’);
subplot(3,2,4);plot(f1,abs(F2));xlabel(‘单位:HZ’);ylabel(‘幅度’);title(‘SSB频谱图2’);
subplot(3,2,6);plot(f1,abs(FM3));xlabel(‘单位:HZ’);ylabel(‘幅度’);title(‘FM频谱图3’);
grid;

⛄三、运行结果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

⛄四、matlab版本及参考文献

1 matlab版本
2014a

2 参考文献
[1]高彦彦,张晶,李莉,贾英茜.基于GUI的《数字信号处理》教学演示系统的设计[J].教育教学论坛. 2019,(48)
[2]李俊,张淑玲,帅晶.基于Matlab GUI界面的数字信号处理辅助教学系统[J].信息通信. 2020,(08)
[3]朱御康.基于MATLAB的数字信号处理实验平台[J].通信电源技术. 2021,38(03)

3 备注
简介此部分摘自互联网,仅供参考,若侵权,联系删除

🍅 仿真咨询
1 各类智能优化算法改进及应用

1.1 PID优化
1.2 VMD优化
1.3 配电网重构
1.4 三维装箱
1.5 微电网优化
1.6 优化布局
1.7 优化参数
1.8 优化成本
1.9 优化充电
1.10 优化调度
1.11 优化电价
1.12 优化发车
1.13 优化分配
1.14 优化覆盖
1.15 优化控制
1.16 优化库存
1.17 优化路由
1.18 优化设计
1.19 优化位置
1.20 优化吸波
1.21 优化选址
1.22 优化运行
1.23 优化指派
1.24 优化组合
1.25 车间调度
1.26 生产调度
1.27 经济调度
1.28 装配线调度
1.29 水库调度
1.30 货位优化
1.31 公交排班优化
1.32 集装箱船配载优化
1.33 水泵组合优化
1.34 医疗资源分配优化
1.35 可视域基站和无人机选址优化

2 机器学习和深度学习分类与预测
2.1 机器学习和深度学习分类
2.1.1 BiLSTM双向长短时记忆神经网络分类
2.1.2 BP神经网络分类
2.1.3 CNN卷积神经网络分类
2.1.4 DBN深度置信网络分类
2.1.5 DELM深度学习极限学习机分类
2.1.6 ELMAN递归神经网络分类
2.1.7 ELM极限学习机分类
2.1.8 GRNN广义回归神经网络分类
2.1.9 GRU门控循环单元分类
2.1.10 KELM混合核极限学习机分类
2.1.11 KNN分类
2.1.12 LSSVM最小二乘法支持向量机分类
2.1.13 LSTM长短时记忆网络分类
2.1.14 MLP全连接神经网络分类
2.1.15 PNN概率神经网络分类
2.1.16 RELM鲁棒极限学习机分类
2.1.17 RF随机森林分类
2.1.18 SCN随机配置网络模型分类
2.1.19 SVM支持向量机分类
2.1.20 XGBOOST分类

2.2 机器学习和深度学习预测
2.2.1 ANFIS自适应模糊神经网络预测
2.2.2 ANN人工神经网络预测
2.2.3 ARMA自回归滑动平均模型预测
2.2.4 BF粒子滤波预测
2.2.5 BiLSTM双向长短时记忆神经网络预测
2.2.6 BLS宽度学习神经网络预测
2.2.7 BP神经网络预测
2.2.8 CNN卷积神经网络预测
2.2.9 DBN深度置信网络预测
2.2.10 DELM深度学习极限学习机预测
2.2.11 DKELM回归预测
2.2.12 ELMAN递归神经网络预测
2.2.13 ELM极限学习机预测
2.2.14 ESN回声状态网络预测
2.2.15 FNN前馈神经网络预测
2.2.16 GMDN预测
2.2.17 GMM高斯混合模型预测
2.2.18 GRNN广义回归神经网络预测
2.2.19 GRU门控循环单元预测
2.2.20 KELM混合核极限学习机预测
2.2.21 LMS最小均方算法预测
2.2.22 LSSVM最小二乘法支持向量机预测
2.2.23 LSTM长短时记忆网络预测
2.2.24 RBF径向基函数神经网络预测
2.2.25 RELM鲁棒极限学习机预测
2.2.26 RF随机森林预测
2.2.27 RNN循环神经网络预测
2.2.28 RVM相关向量机预测
2.2.29 SVM支持向量机预测
2.2.30 TCN时间卷积神经网络预测
2.2.31 XGBoost回归预测
2.2.32 模糊预测
2.2.33 奇异谱分析方法SSA时间序列预测

2.3 机器学习和深度学习实际应用预测
CPI指数预测、PM2.5浓度预测、SOC预测、财务预警预测、产量预测、车位预测、虫情预测、带钢厚度预测、电池健康状态预测、电力负荷预测、房价预测、腐蚀率预测、故障诊断预测、光伏功率预测、轨迹预测、航空发动机寿命预测、汇率预测、混凝土强度预测、加热炉炉温预测、价格预测、交通流预测、居民消费指数预测、空气质量预测、粮食温度预测、气温预测、清水值预测、失业率预测、用电量预测、运输量预测、制造业采购经理指数预测

3 图像处理方面
3.1 图像边缘检测
3.2 图像处理
3.3 图像分割
3.4 图像分类
3.5 图像跟踪
3.6 图像加密解密
3.7 图像检索
3.8 图像配准
3.9 图像拼接
3.10 图像评价
3.11 图像去噪
3.12 图像融合
3.13 图像识别
3.13.1 表盘识别
3.13.2 车道线识别
3.13.3 车辆计数
3.13.4 车辆识别
3.13.5 车牌识别
3.13.6 车位识别
3.13.7 尺寸检测
3.13.8 答题卡识别
3.13.9 电器识别
3.13.10 跌倒检测
3.13.11 动物识别
3.13.12 二维码识别
3.13.13 发票识别
3.13.14 服装识别
3.13.15 汉字识别
3.13.16 红绿灯识别
3.13.17 虹膜识别
3.13.18 火灾检测
3.13.19 疾病分类
3.13.20 交通标志识别
3.13.21 卡号识别
3.13.22 口罩识别
3.13.23 裂缝识别
3.13.24 目标跟踪
3.13.25 疲劳检测
3.13.26 旗帜识别
3.13.27 青草识别
3.13.28 人脸识别
3.13.29 人民币识别
3.13.30 身份证识别
3.13.31 手势识别
3.13.32 数字字母识别
3.13.33 手掌识别
3.13.34 树叶识别
3.13.35 水果识别
3.13.36 条形码识别
3.13.37 温度检测
3.13.38 瑕疵检测
3.13.39 芯片检测
3.13.40 行为识别
3.13.41 验证码识别
3.13.42 药材识别
3.13.43 硬币识别
3.13.44 邮政编码识别
3.13.45 纸牌识别
3.13.46 指纹识别

3.14 图像修复
3.15 图像压缩
3.16 图像隐写
3.17 图像增强
3.18 图像重建

4 路径规划方面
4.1 旅行商问题(TSP)
4.1.1 单旅行商问题(TSP)
4.1.2 多旅行商问题(MTSP)
4.2 车辆路径问题(VRP)
4.2.1 车辆路径问题(VRP)
4.2.2 带容量的车辆路径问题(CVRP)
4.2.3 带容量+时间窗+距离车辆路径问题(DCTWVRP)
4.2.4 带容量+距离车辆路径问题(DCVRP)
4.2.5 带距离的车辆路径问题(DVRP)
4.2.6 带充电站+时间窗车辆路径问题(ETWVRP)
4.2.3 带多种容量的车辆路径问题(MCVRP)
4.2.4 带距离的多车辆路径问题(MDVRP)
4.2.5 同时取送货的车辆路径问题(SDVRP)
4.2.6 带时间窗+容量的车辆路径问题(TWCVRP)
4.2.6 带时间窗的车辆路径问题(TWVRP)
4.3 多式联运运输问题

4.4 机器人路径规划
4.4.1 避障路径规划
4.4.2 迷宫路径规划
4.4.3 栅格地图路径规划

4.5 配送路径规划
4.5.1 冷链配送路径规划
4.5.2 外卖配送路径规划
4.5.3 口罩配送路径规划
4.5.4 药品配送路径规划
4.5.5 含充电站配送路径规划
4.5.6 连锁超市配送路径规划
4.5.7 车辆协同无人机配送路径规划

4.6 无人机路径规划
4.6.1 飞行器仿真
4.6.2 无人机飞行作业
4.6.3 无人机轨迹跟踪
4.6.4 无人机集群仿真
4.6.5 无人机三维路径规划
4.6.6 无人机编队
4.6.7 无人机协同任务
4.6.8 无人机任务分配

5 语音处理
5.1 语音情感识别
5.2 声源定位
5.3 特征提取
5.4 语音编码
5.5 语音处理
5.6 语音分离
5.7 语音分析
5.8 语音合成
5.9 语音加密
5.10 语音去噪
5.11 语音识别
5.12 语音压缩
5.13 语音隐藏

6 元胞自动机方面
6.1 元胞自动机病毒仿真
6.2 元胞自动机城市规划
6.3 元胞自动机交通流
6.4 元胞自动机气体
6.5 元胞自动机人员疏散
6.6 元胞自动机森林火灾
6.7 元胞自动机生命游戏

7 信号处理方面
7.1 故障信号诊断分析
7.1.1 齿轮损伤识别
7.1.2 异步电机转子断条故障诊断
7.1.3 滚动体内外圈故障诊断分析
7.1.4 电机故障诊断分析
7.1.5 轴承故障诊断分析
7.1.6 齿轮箱故障诊断分析
7.1.7 三相逆变器故障诊断分析
7.1.8 柴油机故障诊断

7.2 雷达通信
7.2.1 FMCW仿真
7.2.2 GPS抗干扰
7.2.3 雷达LFM
7.2.4 雷达MIMO
7.2.5 雷达测角
7.2.6 雷达成像
7.2.7 雷达定位
7.2.8 雷达回波
7.2.9 雷达检测
7.2.10 雷达数字信号处理
7.2.11 雷达通信
7.2.12 雷达相控阵
7.2.13 雷达信号分析
7.2.14 雷达预警
7.2.15 雷达脉冲压缩
7.2.16 天线方向图
7.2.17 雷达杂波仿真

7.3 生物电信号
7.3.1 肌电信号EMG
7.3.2 脑电信号EEG
7.3.3 心电信号ECG
7.3.4 心脏仿真

7.4 通信系统
7.4.1 DOA估计
7.4.2 LEACH协议
7.4.3 编码译码
7.4.4 变分模态分解
7.4.5 超宽带仿真
7.4.6 多径衰落仿真
7.4.7 蜂窝网络
7.4.8 管道泄漏
7.4.9 经验模态分解
7.4.10 滤波器设计
7.4.11 模拟信号传输
7.4.12 模拟信号调制
7.4.13 数字基带信号
7.4.14 数字信道
7.4.15 数字信号处理
7.4.16 数字信号传输
7.4.17 数字信号去噪
7.4.18 水声通信
7.4.19 通信仿真
7.4.20 无线传输
7.4.21 误码率仿真
7.4.22 现代通信
7.4.23 信道估计
7.4.24 信号检测
7.4.25 信号融合
7.4.26 信号识别
7.4.27 压缩感知
7.4.28 噪声仿真
7.4.29 噪声干扰

7.5 无人机通信

7.6 无线传感器定位及布局方面
7.6.1 WSN定位
7.6.2 高度预估
7.6.3 滤波跟踪
7.6.4 目标定位
7.6.4.1 Dv-Hop定位
7.6.4.2 RSSI定位
7.6.4.3 智能算法优化定位
7.6.5 组合导航

8 电力系统方面
微电网优化、无功优化、配电网重构、储能配置

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值