图的多种存储结构及其代码

从图的逻辑结构定义来看,图上任何一个顶点都可被看成是第一个顶点,任一顶点的邻接点之间也不存在次序关系。

对于图得逻辑结构的考量:

也正由于图的结构比较复杂,任意两个顶点之间都可能存在联系,因此无法以数据元素在内存中的物理位置来表示元素之间的关系,也就是说,图不可能用简单的顺序存储结构来表示。而多重链表的方式,即以一个数据域和多个指针域组成的结点表示图中的一个顶点,尽管可以实现图结构,但其实在树中,我们也已经讨论过,这是有问题的。如果各个顶点的度数相差很大,按度数最大的顶点设计结点结构会造成很多存储单元的浪费,而若按每个顶点自己的度数设计不同的顶点结构,又带来操作的不便。因此,对于图来说,如何对它实现物理存储是个难题。

邻接矩阵


考虑到图是由顶点和边或弧两部分组成。合在一起比较困难,那就很自然地考虑到分两个结构来分别存储。顶点不分大小、主次,所以用一个一维数组来存储是很不错的选择。而边或弧由于是顶点与顶点之间的关系,一维搞不定,那就考虑用一个二维数组来存储。于是我们的邻接矩阵的方案就诞生了。


图的邻接矩阵(Adjacency Matrix)存储方式是用两个数组来表示图。一个一维数组存储图中顶点信息,一个二维数组(称为邻接矩阵)存储图中的边或弧的信息。
设图G有n个顶点,则邻接矩阵是一个n×n的方阵,定义为:
对于实例无向图的边数组是一个对称矩阵。
所谓对称矩阵就是n阶矩阵的元满足aij=aji,(0≤i,j≤n)。即从矩阵的左上角到右下角的主对角线为轴,右上角的元与左下角相对应的元全都是相等的。
有了这个矩阵,我们就可以很容易地知道图中的信息。

1.我们要判定任意两顶点是否有边无边就非常容易了。

2.我们要知道某个顶点的度,其实就是这个顶点vi在邻接矩阵中第i行(或第i列)的元素之和。比如顶点v1的度就是1+0+1+0=2。3.求顶点vi的所有邻接点就是将矩阵中第i行元素扫描一遍,arc[i][j]为1就是邻接点。

以下展示的是一个有向图的样例,其中包含顶点数组和弧数组:

顶点数组vertex[4]={v0,v1,v2,v3}表示有向图中的顶点集合。

弧数组arc[4][4]是一个矩阵,用于表示图中的弧的关系。矩阵的行和列分别代表了顶点的索引,矩阵中的元素arc[i][j]表示从顶点vi到顶点vj是否存在一条弧。在图7-4-3的右图中,该矩阵表示了有向图的弧的关系。

对于有向图,我们注重每个顶点的入度和出度。顶点vi的入度等于第vi列的各个元素之和,反映了指向该顶点的弧的数量。顶点vi的出度等于第vi行的各个元素之和,表示该顶点指向其他顶点的弧的数量。

要判断顶点vi到vj是否存在弧,只需要查找矩阵中arc[i][j]的值是否为1。如果arc[i][j]为1,则说明从顶点vi到vj存在一条有向弧。

要获取顶点vi的所有邻接点,只需要在矩阵的第i行中查找arc[i][j]为1的顶点。这些顶点是与vi有一条有向弧相连的顶点。

在图的术语中,我们也提到了网的概念,即每条边上带有权值的图称为网。对于有权值的图,可以将权值存储在弧数组的相应位置。例如,可以将arc[i][j]的值设置为权值,表示从顶点vi到vj的有向弧的权值。

因此,在有向图中,顶点数组和弧数组的结构可以方便地表示图的顶点和弧的关系,以及顶点的入度和出度。并且,通过弧数组的矩阵表示,可以方便地判断顶点之间是否存在弧,以及获取顶点的邻接点。

以上是对有向图以及有权值的图的详细解释。这些表示方法为我们进行图的相关操作提供了便利和灵活性。

设图G是网图,有n个顶点,则邻接矩阵是一个n×n的方阵,定义为:
这里wij表示(vi,vj)或<vi,vj>上的权值。∞表示一个计算机允许的、大于所有边上权值的值,也就是一个不可能的极限值。有同学会问,为什么不是0呢?原因在于权值wij大多数情况下是正值,但个别时候可能就是0,甚至有可能是负值。因此必须要用一个不可能的值来s hiyingci代表不存在。


那么邻接矩阵是如何实现图的创建的呢?我们先来看看图的邻接矩阵存储的结构,代码如下。

/*  顶点类型应由用户定义  */
typedef  char  VertexType;
/*  边上的权值类型应由用户定义  */
typedef  int  EdgeType;   
/*  最大顶点数,应由用户定义  */
#define  MAXVEX  100      
/*  用65535来代表∞  */
#define  INFINITY  65535  typedef  struct
{
/*  顶点表  */
VertexType  vexs[MAXVEX]; 
/*  邻接矩阵,可看作边表  */
EdgeType  arc[MAXVEX][MAXVEX];        
/*  图中当前的顶点数和边数  */
int  numVertexes,  numEdges;           
}  
MGraph;

有了这个结构定义,我们构造一个图,其实就是给顶点表和边表输入数据的过程。我们来看看无向网图的创建代码。

/*  建立无向网图的邻接矩阵表示  */
void  CreateMGraph(MGraph  *G)
{
int  i,  j,  k,  w;
printf("输入顶点数和边数:\n");
/*  输入顶点数和边数  */
scanf("%d,%d",  &G->numVertexes,  &G->numEdges);    
/*  读入顶点信息,建立顶点表  */
for  (i  =  0;  i  <  G->numVertexes;  i++)         
scanf(&G->vexs[i]);
for  (i  =  0;  i  <  G->numVertexes;  i++)
for  (j  =  0;  j  <G->numVertexes;  j++)
/*  邻接矩阵初始化  */
G->arc[i][j]  =  INFINITY;
/*  读入numEdges条边,建立邻接矩阵  */
for  (k  =  0;  k  <  G->numEdges;  k++)            
{
printf("输入边(vi,vj)上的下标i,下标j和权w:\n");
/*  输入边(vi,vj)上的权w  */
scanf("%d,%d,%d",  &i,  &j,  &w);      
G->arc[i][j]  =  w;
/*  因为是无向图,矩阵对称  */
G->arc[j][i]  =  G->arc[i][j];         
}
}

从代码中也可以得到,n个顶点和e条边的无向网图的创建,时间复杂度为O(n+n2+e),其中对邻接矩阵G.arc的初始化耗费了O(n2)的时间。
邻接表
邻接矩阵是不错的一种图存储结构,但是我们也发现,对于边数相对顶点较少的图,这种结构是存在对存储空间的极大浪费的。


因此我们考虑另外一种存储结构方式。回忆我们在线性表时谈到,顺序存储结构就存在预先分配内存可能造成存储空间浪费的问题,于是引出了链式存储的结构。同样的,我们也可以考虑对边或弧使用链式存储的方式来避免空间浪费的问题。


再回忆我们在树中谈存储结构时,讲到了一种孩子表示法,将结点存入数组,并对结点的孩子进行链式存储,不管有多少孩子,也不会存在空间浪费问题。这个思路同样适用于图的存储。我们把这种数组与链表相结合的存储方法称为邻接表(Ad-jacency List)。
邻接表的处理办法是这样。

1.图中顶点用一个一维数组存储,当然,顶点也可以用单链表来存储,不过数组可以较容易地读取顶点信息,更加方便。另外,对于顶点数组中,每个数据元素还需要存储指向第一个邻接点的指针,以便于查找该顶点的边信息。

2.图中每个顶点vi的所有邻接点构成一个线性表,由于邻接点的个数不定,所以用单链表存储,无向图称为顶点vi的边表,有向图则称为顶点vi作为弧尾的出边表。

对于一个无向图的邻接表结构,其中包含顶点表和边表:

顶点表结点由两个字段组成:
- data:存储顶点的相关信息。
- firstedge:指针域,指向边表中的第一个结点,即该顶点的第一个邻接点。

边表结点由两个字段组成:
- adjvex:邻接点域,存储某顶点的邻接点在顶点表中的下标。
- next:指针域,指向边表中的下一个结点。

通过顶点表和边表的结构,可以方便地获取图的相关信息。例如,要获取某个顶点的度,只需要查找该顶点的边表中结点的个数。要判断顶点vi到vj是否存在边,只需要检查顶点vi的边表中的adjvex是否包含了顶点vj的下标。要获取顶点的所有邻接点,只需遍历该顶点的边表,得到adjvex对应的顶点即可。

对于有向图,邻接表的结构类似。在有向图中,我们通常以顶点为弧尾来存储边表,这样可以方便地获取每个顶点的出度。但有时为了获取顶点的入度或以顶点为弧头的弧,可以构建一个有向图的逆邻接表,即为每个顶点vi建立一个指向vi为弧头的链表。

对于带权值的网图,可以在边表结点中增加一个weight字段,用于存储权值信息。这样可以方便地表示图中边的权值。

以上是对邻接表结构的详细解释。邻接表结构在图的表示中非常常见,它提供了一种较为灵活和高效的方式来表示图的结构,并可以方便地获取图的相关信息。有了这些结构的图,下面关于结点定义的代码就很好理解了。

/*  顶点类型应由用户定义  */
typedef  char  VertexType;
/*  边上的权值类型应由用户定义  */
typedef  int  EdgeType;   
/*  边表结点  */
typedef  struct  EdgeNode 
{
/*  邻接点域,存储该顶点对应的下标  */
int  adjvex; 
/*  用于存储权值,对于非网图可以不需要  */
EdgeType  weight;         
/*  链域,指向下一个邻接点   */
struct  EdgeNode  *next;  
}  
EdgeNode;
/*  顶点表结点  */
typedef  struct  VertexNode            
{
/*  顶点域,存储顶点信息  */
VertexType  data;         
/*  边表头指针  */
EdgeNode  *firstedge;     
}  
VertexNode,  AdjList[MAXVEX];
typedef  struct
{
AdjList  adjList;
/*  图中当前顶点数和边数  */
int  numVertexes,  numEdges;        
}  
GraphAdjList;

对于邻接表的创建,也就是顺理成章之事。无向图的邻接表创建代码如下。

/*  建立图的邻接表结构  */
void    CreateALGraph(GraphAdjList  *G)
{
int  i,  j,  k;
EdgeNode  *e;
printf("输入顶点数和边数:\n");
/*  输入顶点数和边数  */
scanf("%d,%d",  &G->numVertexes,  &G->numEdges);        
/*  读入顶点信息,建立顶点表  */
for  (i  =  0;  i  <  G->numVertexes;  i++)         
{
/*  输入顶点信息  */
scanf(&G->adjList[i].data);            
/*  将边表置为空表  */
G->adjList[i].firstedge  =  NULL;      
}
/*  建立边表  */
for  (k  =  0;  k  <  G->numEdges;  k++)            
{
printf("输入边(vi,vj)上的顶点序号:\n");
/*  输入边(vi,vj)上的顶点序号  */
scanf("%d,%d",  &i,  &j); 
/*  向内存申请空间,  */
/*  生成边表结点  */
e  =  (EdgeNode  *)malloc(sizeof(EdgeNode));        
/*  邻接序号为j  */e->adjvex  =  j;          
/*  将e指针指向当前顶点指向的结点  */
e->next  =  G->adjList[i].firstedge;   
/*  将当前顶点的指针指向e  */
G->adjList[i].firstedge  =  e;         
/*  向内存申请空间,  */
/*  生成边表结点  */
e  =  (EdgeNode  *)malloc(sizeof(EdgeNode));        
/*  邻接序号为i  */
e->adjvex  =  i;          
/*  将e指针指向当前顶点指向的结点  */
e->next  =  G->adjList[j].firstedge;   
/*  将当前顶点的指针指向e  */
G->adjList[j].firstedge  =  e;         
}
}

这里部分代码应用了我们在单链表创建中讲解到的头插法,由于对于无向图,一条边对应都是两个顶点,所以在循环中,一次就针对i和j分别进行了插入。本算法的时间复杂度,对于n个顶点e条边来说,很容易得出是O(n+e)。


十字链表


记得看过一个创意,我非常喜欢。说的是在美国,晚上需要保安通过视频监控对如商场超市、码头仓库、办公写字楼等场所进行安保工作。值夜班代价总是比较大的,所以人员成本很高。我们国家的一位老兄在国内经常和美国的朋友视频聊天,但总为白天黑夜的时差苦恼,突然灵感一来,想到一个绝妙的点子。他创建一家公司,承接美国客户的视频监控任务,因为美国的黑夜就是中国的白天,利用互联网,他的员工白天上班就可以监控到美国仓库夜间的实际情况,如果发生了像火灾、偷盗这样的突发事件,及时电话到美国当地相关人员处理。由于利用了时差和人员成本的优势,这位老兄发了大财。这个创意让我们知道,充分利用现有的资源,正向思维、逆向思维、整合思维可以创造更大价值。

那么对于有向图来说,邻接表是有缺陷的。关心了出度问题,想了解入度就必须要遍历整个图才能知道,反之,逆邻接表解决了入度却不了解出度的情况。有没有可能把邻接表与逆邻接表结合起来呢?答案是肯定的,就是把它们整合在一起。这就是我们现在要讲的有向图的一种存储方法:十字链表(Orthogonal List)。

重新定义了顶点表节点和边表节点的结构:

其中顶点表节点包括data、firstin和firstout三个域,边表节点包括tailvex、headvex、headlink和taillink四个域。

顶点表节点的结构如下:
- data:数据域,存储顶点的信息。
- firstin:指针域,指向该顶点的入边表中的第一个结点。
- firstout:指针域,指向该顶点的出边表中的第一个结点。

边表节点的结构如下:
- tailvex:弧起点在顶点表的下标。
- headvex:弧终点在顶点表的下标。
- headlink:指针域,指向入边表中与该边终点相同的下一条边。
- taillink:指针域,指向出边表中与该边起点相同的下一条边。

这样的重新定义结构在有向图和有向网中,可以方便地表示顶点的出边和入边关系。


十字链表的好处就是因为把邻接表和逆邻接表整合在了一起,这样既容易找到以vi为尾的弧,也容易找到以vi为头的弧,因而容易求得顶点的出度和入度。而且它除了结构复杂一点外,其实创建图算法的时间复杂度是和邻接表相同的,因此,在有向图的应用中,十字链表是非常好的数据结构模型。


邻接多重表
考虑有向图的优化存储结构,对于无向图的邻接表的问题:如果我们在无向图的应用中,关注的重点是顶点,那么邻接表是不错的选择,但如果我们更关注边的操作,比如对已访问过的边做标记,删除某一条边等操作,那就意味着,需要找到这条边的两个边表结点进行操作,这其实还是比较麻烦的。


因此,我们也仿照十字链表的方式,对边表结点的结构进行一些改造,也许就可以避免刚才提到的问题。

邻接多重表是一种用于表示无向图的数据结构。它的主要特点是每条边只有一个结点来表示,而不是邻接表中的两个结点。

邻接多重表结构中的每个结点都包含了以下几个字段:
- ivex:表示与某条边依附的顶点在顶点表中的下标。
- jvex:表示与某条边依附的另一个顶点在顶点表中的下标。
- ilink:指向依附于顶点ivex的下一条边。
- jlink:指向依附于顶点jvex的下一条边。

通过这些字段,我们可以构建出一个连通图的邻接多重表。在连线的过程中,首先我们需要绘制顶点表中的所有顶点和边表中的所有边。然后,根据边表中的信息,我们可以按照以下规则绘制连线:

  • - 首先,将顶点的firstedge字段指向一条边。顶点的下标与ivex的值相同。
  • - 然后,根据每条边的信息,将ilink指向的结点的jvex字段设置为与其ivex字段相同的值,以及jlink指向的结点的ivex字段设置为与其jvex字段相同的值。这样就可以构建出相应顶点的下一条边的链接。

通过以上的连线过程,我们就可以得到一个图的邻接多重表结构。这种结构可以方便地进行各种基本操作,例如添加、删除、搜索等。

总结来说,邻接多重表与邻接表的区别在于边的表示方式不同。邻接多重表中的每条边只有一个结点来表示,而邻接表中的每条边有两个结点表示。这种区别使得邻接多重表在对边进行操作时更加方便。

边集数组
边集数组是由两个一维数组构成。一个是存储顶点的信息;另一个是存储边的信息,这个边数组每个数据元素由一条边的起点下标(begin)、终点下标(end)和权(weight)组成。显然边集数组关注的是边的集合,在边集数组中要查找一个顶点的度需要扫描整个边数组,效率并不高。因此它更适合对边依次进行处理的操作,而不适合对顶点相关的操作。

定义的边数组结构:
begin  end  weight  
其中begin是存储起点下标,end是存储终点下标,weight是存储权值。
 

  • 22
    点赞
  • 22
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
是一种非常重要的数据结构,在计算机科学中被广泛应用,例如:社交网络、电路设计、路线规划等。一般来说,可以用多种方式进行存储,例如邻接矩阵、邻接表、十字链表等。下面以邻接矩阵为例,介绍存储结构的实现及其应用。 邻接矩阵是一种二维数组,其中数组的行和列分别表示的顶点,数组中的元素表示两个顶点之间的边的关系。具体来说,如果两个顶点之间存在一条边,则对应的数组元素为1,否则为0。对于无向,邻接矩阵是一个对称矩阵,因为边是双向的;而对于有向,则不一定是对称矩阵。 下面是一个简单的代码示例,实现了一个无向的邻接矩阵存储结构: ```c #include <stdio.h> #define MAX_VERTICES 100 typedef struct { int n; // 顶点数 int adj[MAX_VERTICES][MAX_VERTICES]; // 邻接矩阵 } Graph; void initGraph(Graph *g, int n) { int i, j; g->n = n; for (i = 0; i < g->n; i++) { for (j = 0; j < g->n; j++) { g->adj[i][j] = 0; // 初始化邻接矩阵 } } } void addEdge(Graph *g, int u, int v) { g->adj[u][v] = 1; g->adj[v][u] = 1; // 无向需要添加双向边 } void printGraph(Graph *g) { int i, j; for (i = 0; i < g->n; i++) { for (j = 0; j < g->n; j++) { printf("%d ", g->adj[i][j]); } printf("\n"); } } int main() { Graph g; initGraph(&g, 5); addEdge(&g, 0, 1); addEdge(&g, 0, 2); addEdge(&g, 1, 2); addEdge(&g, 2, 3); addEdge(&g, 3, 4); printGraph(&g); return 0; } ``` 上面的代码中,我们定义了一个结构体 `Graph`,包含了顶点数 `n` 和邻接矩阵 `adj`。我们通过 `initGraph()` 函数初始化邻接矩阵,然后通过 `addEdge()` 函数添加边。最后,我们通过 `printGraph()` 函数打印出邻接矩阵。 邻接矩阵存储结构的应用非常广泛,例如: 1. 判断两个顶点之间是否存在边可以在常数时间内完成,即 $O(1)$。 2. 遍历一个顶点的所有邻居可以在 $O(n)$ 时间内完成,其中 $n$ 是顶点数。 3. 计算的度数可以在 $O(n^2)$ 时间内完成,其中 $n$ 是顶点数。 4. 判断是否是稠密(即边数接近于最大边数 $n(n-1)/2$)可以在 $O(n^2)$ 时间内完成。 当然,邻接矩阵存储结构也有一些缺点,例如: 1. 对于稀疏(即边数远远小于最大边数 $n(n-1)/2$),会浪费大量的空间。 2. 在修改结构时,需要重新分配空间,因此效率较低。 因此,在实际应用中,需要根据具体情况选择适合的存储结构
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值