自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(19)
  • 收藏
  • 关注

原创 基于Diffusion Model的数据增强方法应用——毕业设计 其五

笔者个人的毕业设计课题如下:简介:使用预训练的Diffusion Model图像生成模型生成图像,将这些生成的图像作为扩充训练集加入到2D目标检测器、2D图像分类器的训练过程。深度学习是数据驱动的,随着数据量的扩充,能够提高检测器、分类器的鲁棒性、准确性。建议的baseline:分类:ResNet检测:YOLO可以看到,给的题目难度还是比较轻松的;本次毕设的全过程会以周为单位采用博客的形式记录下来。上周的任务完成后,因为笔者个人在准备春招企业的二面,一直在忙于准备demo和其他相关的内容;

2023-03-27 15:00:20 2640 5

原创 基于Diffusion Model的数据增强方法应用——毕业设计 其四

笔者个人的毕业设计课题如下:简介:使用预训练的Diffusion Model图像生成模型生成图像,将这些生成的图像作为扩充训练集加入到2D目标检测器、2D图像分类器的训练过程。深度学习是数据驱动的,随着数据量的扩充,能够提高检测器、分类器的鲁棒性、准确性。建议的baseline:分类:ResNet检测:YOLO可以看到,给的题目难度还是比较轻松的;本次毕设的全过程会以周为单位采用博客的形式记录下来。在完成上周的内容后,本周的内容将会主要聚焦于以下两点。

2023-03-12 16:18:33 2179 2

原创 基于Diffusion Model的数据增强方法应用——毕业设计 其三

笔者个人的毕业设计课题如下:简介:使用预训练的Diffusion Model图像生成模型生成图像,将这些生成的图像作为扩充训练集加入到2D目标检测器、2D图像分类器的训练过程。深度学习是数据驱动的,随着数据量的扩充,能够提高检测器、分类器的鲁棒性、准确性。建议的baseline:分类:ResNet检测:YOLO可以看到,给的题目难度还是比较轻松的;本次毕设的全过程会以周为单位采用博客的形式记录下来。由于个人原因,这周还是没法使用实验室的卡;

2023-03-05 00:19:28 3139 3

原创 基于Diffusion Model的数据增强方法应用——毕业设计 其二

笔者个人的毕业设计课题如下:简介:使用预训练的Diffusion Model图像生成模型生成图像,将这些生成的图像作为扩充训练集加入到2D目标检测器、2D图像分类器的训练过程。深度学习是数据驱动的,随着数据量的扩充,能够提高检测器、分类器的鲁棒性、准确性。建议的baseline:分类:ResNet检测:YOLO可以看到,给的题目难度还是比较轻松的;本次毕设的全过程会以周为单位采用博客的形式记录下来。本来本周的计划是搭建和运行跑通扩散模型的,但是由于个人原因,这周大部分的时间并不在学校;

2023-02-27 12:43:36 1220

原创 基于Diffusion Model的数据增强方法应用——毕业设计 其一

笔者个人的毕业设计课题如下:简介:使用预训练的Diffusion Model图像生成模型生成图像,将这些生成的图像作为扩充训练集加入到2D目标检测器、2D图像分类器的训练过程。深度学习是数据驱动的,随着数据量的扩充,能够提高检测器、分类器的鲁棒性、准确性。建议的baseline:分类:ResNet检测:YOLO可以看到,给的题目难度还是比较轻松的;本次毕设的全过程会以周为单位采用博客的形式记录下来。对机器学习尤其是深度学习有一定了解的朋友都会听过类似的说法【DL的首要驱动力是数据】。

2023-02-17 21:21:34 4369 7

原创 计算机视觉——基于Bag-of-words 的图像检索技术

语言:python3.7系统:Ubuntu16.04需要注意的是,Bag-of-words并非是计算机视觉领域的方法,它是同属机器学习这个人工智能学课下另一方向自然语言处理的方法。Bag of words,顾名思义,就是单词袋模型。这里的“单词”指代我们在图像数据库中所提取出的“图像特征”,每个特征就是一个单词,如下图所示。我们主要通过匹配图像中出现单词频率“最像”的图像,为其匹配图像。通过获取到的单词直方图,计算其与数据库中图像的欧氏距离,规定一定阈值内的图像为其所匹配到的图像,最终实现图像识别与搜索。

2022-06-18 21:49:18 806

原创 计算机视觉——相机标定

系统:Ubuntu16.04语言:python3.7我们拍摄的物体都处于三维世界坐标系中,而相机拍摄时镜头看到的是三维相机坐标系,成像时三维相机坐标系向二维图像坐标系转换。不同的镜头成像时的转换矩阵不同,同时可能引入失真,标定的作用是近似地估算出转换矩阵和失真系数。为了估算,需要知道若干点的三维世界坐标系中的坐标和二维图像坐标系中的坐标,也就是拍摄棋盘的意义。通过相机标定,获取摄像机的内参和外参矩阵(同时也会得到每一幅标定图像的选择和平移矩阵),内参和外参系数可以对之后相机拍摄的图像就进行矫正,得到畸变相

2022-06-18 21:22:34 598 1

原创 计算机视觉——图像拼接

系统:Ubuntu16.04语言:python3.7利用Sift提取图像的局部特征,在尺度空间寻找极值点,并提取出其位置、尺度、方向信息。具体步骤:1). 生成高斯差分金字塔(DOG金字塔),尺度空间构建2). 空间极值点检测(关键点的初步查探)3). 稳定关键点的精确定位4). 稳定关键点方向信息分配5). 关键点描述6). 特征点匹配图像配准是一种确定待拼接图像间的重叠区域以及重叠位置的技术,它是整个图像拼接的核心。本节采用的是基于特征点的图像配准方法,即通过匹配点对构建图像序列之间的变换矩阵,从而完

2022-06-18 20:49:33 859

原创 计算机视觉——sift特征匹配+opencv(包含sift的低于3.4.3的opencv安装方法)

文章目录实验环境环境配置(低于3.4.3的opencv安装方法)虚拟环境的搭建(非必要)局部图像描述子Harris 角点检测基本原理SIFT特征提取代码实现运行实例匹配图像展示匹配结果和分析实验环境系统:Ubuntu16.04语言:python3.7环境配置(低于3.4.3的opencv安装方法)本次实验的重头戏之一在于高版本的opencv处于版权保护原因取消了sift函数的使用;在查阅到的资料里,3.4.3以上的版本就无法使用了。而采用命令行安装时,可以直接是用以下语句进行安装(建立在你已经换

2022-03-30 22:42:54 4509

原创 计算机视觉——linux下的直方图,直方图均衡化和高斯滤波

文章目录实验环境环境配置虚拟环境的搭建(非必要)opencv的安装直方图和直方图均衡化高斯滤波代码编写实验结果与对比实验环境系统:Ubuntu16.04语言:python3.6cuda:9.0环境配置这次实验是在linux的系统下进行的;而Ubuntu是Linux系统中优秀的一个,具体的安装这里就不详述了,类似的教程很多,如果在此处详细讲解又会变成长篇大论,简单来说,本次实验的系统只需要一个Ubuntu的系统并且安装了cuda(非必要)。虚拟环境的搭建(非必要)linux的命令行操作这里就不

2022-03-16 22:06:59 4835

原创 SVM支持向量机

文章目录SVM简介SVM简介前几次的文章中提到过,机器学习的主要任务分为分类问题和回归问题;而SVM是一个典型的解决分类问题的算法。现在假定如下图的一个分类任务的情况如图a所示,在二维空间内分布着一些共有两种类别的分类样本,对于分类问题而言,最基本的解决思路,就是找到一个划分的超平面,将不同的样本分开;其中图b中的线A和图c中的线B都是这样的超平面。但正如上图所示,事实上这样的超平面可以找到无数个;那么我们应该以哪个作为最终选定的超平面呢?从直观上来讲,我们会认为图b中的线A是一个更加优秀的选择,

2021-12-26 21:44:33 689

原创 朴素贝叶斯

文章目录实验环境算法原理联合概率分布条件概率贝叶斯公式朴素贝叶斯分类器算法问题补充拉普拉斯修正溢出问题离散变量与连续性变量问题实验——垃圾邮件分类实验环境Python:3.7.0Anconda:3-5.3.1 64位操作系统:win10开发工具:sublime text(非必要)算法原理朴素贝叶斯是基于贝叶斯定理与特征条件独立性假设的分类方法。对于给定的训练集,首先基于特征条件独立假设学习输入输出的联合概率分布(朴素贝叶斯法这种通过学习得到模型的机制,显然属于生成模型);然后基于此模型,对给定

2021-11-29 15:52:28 689

原创 C++实验四 STL

STL实验环境STL简介实例——序列与像素变换实验环境操作系统:win10gcc:8.1.0开发软件:qt5.14.2STL简介STL(Standard Template Library),即标准模板库,是一个具有工业强度的,高效的C++程序库。它被容纳于C++标准程序库(C++ Standard Library)中,是ANSI/ISO C++标准中最新的也是极具革命性的一部分。该库包含了诸多在计算机科学领域里所常用的基本数据结构和基本算法。为广大C++程序员们提供了一个可扩展的应用框架,高度体

2021-11-26 12:46:05 229

原创 logistic回归

文章目录实验环境实验简介线性回归最小二乘与参数求解对数几率回归实验数据集代码实现实验环境Python:3.7.0Anconda:3-5.3.1 64位操作系统:win10开发工具:sublime text(非必要)实验简介本次实验为学习和了解机器学习中应用到的线性模型和其中的经典案例logistic回归,并且以UCI的数据集完成一个分类任务。线性回归在直接引入**对数几率回归(即logistic回归)**前,更为合适的方式是先介绍线性回归首先,线性模式一般的形式如下:其中x=(x1,

2021-11-21 22:47:01 1174

原创 C++实验三 模板

模板函数与模板类实验环境模板概念特化模板函数模板类队列类实验环境操作系统:win10gcc:8.1.0开发软件:qt5.14.2模板概念在C++的相关代码开发中,我们常常会遇到的是关于代码通用性的问题;模板就是C++支持参数化程序设计的工具,通过它可以实现参数化多态性。这里可以看一下两个例子。int sum(int x,int y){ return x+y;}double sum(double x,double y){ return x+y;}事实上两个函数除了数据类型以外进

2021-11-16 22:16:19 676

原创 C++实验二 继承和多态

文章目录实验环境实验内容动态库与静态库继承using的使用友元多态矢量图实验环境操作系统:win10gcc:8.1.0开发软件:qt5.14.2实验内容一、继承访问权限测试设计类A具有public, protected, private等不同属性的成员函数或变量;类B通过public, protected, private等不同方式继承A,在类B的成员函数中测试访问A的成员函数或变量;在类B中添加public, protected, private等不同属性的成员函数或变量,在外部测试访问

2021-11-03 12:37:34 788

原创 决策树 基于python实现ID3,C4.5,CART算法

实验目录实验环境简介决策树(decision tree)信息熵信息增益(应用于ID3算法)信息增益率(在C4.5算法中使用)基尼指数(被用于CART算法)实验准备实验环境Python:3.7.0Anconda:3-5.3.1 64位操作系统:win10开发工具:sublime text(非必要)简介决策树(decision tree):是一种基本的分类与回归方法,此处主要讨论分类的决策树。在分类问题中,表示基于特征对实例进行分类的过程,可以认为是if-then的集合,也可以认为是定义在特征

2021-10-28 23:07:38 2342 3

原创 C++实验一 martrix类的实现

实验环境操作系统:win10gcc:8.1.0开发软件vscode dev实验内容一、构造函数CMatrix(): 不带参数的构造函数;CMatrix(int nRow, int nCol, double *pData=NULL) : 带行、列及数据指针等参数的构造函数,并且参数带默认值;CMatrix(const char * strPath): 带文件路径参数的构造函数;CMatrix(const CMatrix& m): 拷贝构造函数此外会用列表初始化成员变量:C

2021-10-12 19:17:35 645

原创 机器学习入门-kNN算法实现手写数字识别

实验环境Python:3.7.0Anconda:3-5.3.1 64位操作系统:win10开发工具:sublime text(非必要)简介本次实验中的重点为采用kNN算法进行手写数字识别,其中kNN算法是机器学习中入门的分类算法。其核心思想是将需要进行分类的目标放入已有充足样本的向量集中,求得与其距离最近的前k(自定超参数)个点,并返回这k个点中出现频率最高的类别,并将此类别作为模型的预测结果。kNN算法为了实现手写数字的分类,最重要的是取得分类算法#kNN算法def kNNclassi

2021-09-27 23:32:14 6497 3

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除