朴素贝叶斯

实验环境

Python:3.7.0
Anconda:3-5.3.1 64位
操作系统:win10
开发工具:sublime text(非必要)

算法原理

朴素贝叶斯是基于贝叶斯定理与特征条件独立性假设的分类方法。对于给定的训练集,首先基于特征条件独立假设学习输入输出的联合概率分布(朴素贝叶斯法这种通过学习得到模型的机制,显然属于生成模型);然后基于此模型,对给定的输入 x,利用贝叶斯定理求出后验概率最大的输出 y。

在开始算法原理和实验相关讲解之前,让我们先了解贝叶斯的数学模型概念。

联合概率分布

首先回想一下下面这个公式;
在这里插入图片描述
分常简单的概率公式 用于表示事件x和y同时发生下的概率。其中,若x与y完全独立则P(xy)=P(x)*P(y)

条件概率

在这里插入图片描述
同样注意上面的式子,在概率中应该也有学到;简单来说,上面的式子表示了一种在事件B发生的条件下事件A发生的概率

贝叶斯公式

在有了前面的两个原理后,可以进一步引出重要的贝叶斯公式,如下

在这里插入图片描述
上面的公式即使贝叶斯公式,从结果上来说,它最大的作用是可以在从原因推断结果,或者反之;就像公式中呈现的那样,在知道了B发生下A的条件概率和A与B分别发生的概率后,可以反推计算A发生下B发生的概率;推导过程其实也十分简单,只要将上面的公式与全概率公式(即P(A)=P(A|B)*P(B))联立即可求得,这里不再赘述。

朴素贝叶斯分类器

有了上面的数学原理基础后,可以进行接下来的进程;简而言之,就是使用贝叶斯算法进行机器学习的模型建立。

这里先给出结论,以这样的方式建立的机器学习模型,事实上是这样的一个过程;首先从输入中得到需要判断特征向量X,再求算存在这个X的情况下属于每一个输出类别C的概率;也就是求P(Ci|X)的不同结果中最大的那个概率,并将其作为结果输出。

可以看出,上面的过程是代入了前面的贝叶斯公式的过程。也就是如下
在这里插入图片描述

其中图中用红框圈起来的部分则由模型学习训练集的过程得到;

同样可以注意到P(X=x)这一部分实际上是可以省略的,因为对于每一个样本个体来说,这一项都是相等的,因为每一个样本都是独特的。

那么如下的公式就是我们最终得到的式子
在这里插入图片描述
但这里需要提出一个问题,这里所提出的是贝叶斯分类器而缺少了朴素一词。这里的朴素在英文中为naive一词,我们使用的朴素贝叶斯分类器需要在这条公式上追加一条让公式变简单的条件。

观察上面的公式,可以看到上面的公式面临着一个巨大的问题,即我们需要求解P(X=x|C)的概率,而x既然作为特征向量,有时往往维度很高,但这时在样本集中很难找到一样的样本,这就使得其概率P(X=x|C)=0,这显然是个问题。

为了让它变得更幼稚(navie),我们在这里直接定义各个特征间独立分布,也就可以得到下列的公式
在这里插入图片描述

像上面一样,我们可以省略P(X)的部分,即是最终的结果。

算法问题补充

拉普拉斯修正

试想一种情况,当训练集中不存在输入向量的某一属性的样本时,那么按照上面的贝叶斯公式,经过累乘后最终概率也会变为0,但这显然是不合理的情况;而拉普拉斯修正就解决了这个问题。

令N表示训练集D中可能的类别数,Ni表示第i个属性可能的取值数,把P©和P(Xi|C)的公式分别修正为:
在这里插入图片描述

这样就算|Dc,Xi| = 0,最后的P(Xi|C)=1/(Dc+Ni),不会变成0从而使全局归零。有效避免了因训练样本不充分而导致概率估值为0的问题。

溢出问题

首先考虑条件概率乘法计算过程中,因子一般较小(均是小于1的实数)。当属性数量增多时候,会导致累乘结果下溢出的现象。

由于计算机本身存储数据的特性,连续这样的情况出现会导致精确性受到影响乃至完全无法使用;为了解决,我们引出对数的概念。

一种解决办法是对乘积取自然对数。在代数中有 ln(A * B) = ln(A) + ln(B), 于是通过求对数可以避免下溢出或者浮点数舍入导致的错误。同时,采用自然对数进行处理不会有任何损失。

下图给出了函数 F(x) 与 ln(F(x)) 的曲线。可以看出,它们在相同区域内同时增加或者减少,并且在相同点上取到极值。它们的取值虽然不同,但不影响最终结果。

在这里插入图片描述

离散变量与连续性变量问题

除了上述问题外,我们还会遇到一个问题。在进行分类问题中,我们会遇到离散性和连续性两种变量。两种不同变量在进行贝叶斯分类的计算时需要采用不同的策略。

对于离散性的变量,显然十分简单,可以单纯的通过概率求得如下
在这里插入图片描述

但当问题来到连续性的变量时一般存在两种解决思路。
第一种方法是把每一个连续的数据离散化,然后用相应的离散区间替换连续数值。这种方法对于划分离散区间的粒度要求较高,不能太细,也不能太粗。
第二种方法是假设连续数据服从某个概率分布,使用训练数据估计分布参数,通常我们用高斯分布来表示连续数据的类条件概率分布。

当然,常用的方法时采用第二者,这里将其公式放在下面。
在这里插入图片描述

实验——垃圾邮件分类

首先将数据集的概览展示一下
在这里插入图片描述
显而易见的,左边的是正常邮件的样本而右边的是垃圾邮件的样本。

首先在前面进行说明,本次实验除了常用的numpy库外,还引用了re的库(主要用于正则化相关表达)和random(用于随机选取训练集和测试集)两个额外的库。

首先是将切分的实验样本词条整理成不重复的词条列表,也就是词汇表

def createVocabList(dataSet):
    vocabSet = set([])  # 创建空列表
    for document in dataSet:
        vocabSet = vocabSet | set(document)  # 取并集
    return list(vocabSet)

下一步是将根据vocabList词汇表,将inputSet向量化,向量的每个元素为1或0

def setOfWords2Vec(vocabList, inputSet):
    returnVec = [0] * len(vocabList)               #创建初始空向量
    for word in inputSet:                          #遍历每个词条
        if word in vocabList:                      #如果词条存在于词汇表中,则置1
            returnVec[vocabList.index(word)] = 1
        else:
            print("the word: %s is not in my Vocabulary!" % word)
    return returnVec

然后是接收一个大字符串并将其解析为字符串列表

def textParse(bigString):
    listOfTokens = re.split(r'\W', bigString)  # 将特殊符号作为切分标志进行字符串切分,即非字母、非数字
    return [tok.lower() for tok in listOfTokens if len(tok) > 2]

接着是根据vocabList词汇表创建一个类似下图概念的词袋模型用于判断模型中输入特征向量的所属类别。
在这里插入图片描述

def bagOfWords2VecMN(vocabList, inputSet):
    returnVec = [0] * len(vocabList)  # 创建初始空向量
    for word in inputSet:             # 遍历每个词条
        if word in vocabList:         # 如果词条存在于词汇表中,则加一
            returnVec[vocabList.index(word)] += 1
    return returnVec

然后编写朴素贝叶斯分类器的分类函数

def classifyNB(vec2Classify, p0Vec, p1Vec, pClass1):
    p1=sum(vec2Classify*p1Vec)+np.log(pClass1)
    p0=sum(vec2Classify*p0Vec)+np.log(1.0-pClass1)
    if p1 > p0:
        return 1
    else:
        return 0

在有了上面的几个函数后,可以着手进行训练函数的编写,如下

def trainNB0(trainMatrix, trainCategory):
    numTrainDocs = len(trainMatrix)  # 计算训练的文档数目
    numWords = len(trainMatrix[0])  # 计算每篇文档的词条数
    pAbusive = sum(trainCategory) / float(numTrainDocs)  # 文档属于垃圾邮件类的概率
    p0Num = np.ones(numWords)
    p1Num = np.ones(numWords)  # numpy.ones数组,词条出现数初始化为1
    p0Denom = 2
    p1Denom = 2  # 拉普拉斯平滑
    for i in range(numTrainDocs):
        if trainCategory[i] == 1:  # 统计属于侮辱类的条件概率所需的数据
            p1Num += trainMatrix[i]
            p1Denom += sum(trainMatrix[i])
        else:  # 统计属于非侮辱类的条件概率所需的数据
            p0Num += trainMatrix[i]
            p0Denom += sum(trainMatrix[i])
    p1Vect = np.log(p1Num / p1Denom)
    p0Vect = np.log(p0Num / p0Denom)   #取对数防止下溢出
    return p0Vect, p1Vect, pAbusive  

最后测试朴素贝叶斯分类器,使用朴素贝叶斯进行交叉验证

def spamTest():
    docList = []
    classList = []
    fullText = []
    for i in range(1, 26):  # 遍历所有个txt文件
        wordList = textParse(open('email/spam/%d.txt' % i, 'r').read())  #读取每个垃圾邮件,并字符串转换成字符串列表
        docList.append(wordList)
        fullText.append(wordList)
        classList.append(1)  # 标记垃圾邮件,1表示垃圾文件
        wordList = textParse(open('email/ham/%d.txt' % i, 'r').read())  # 读取每个非垃圾邮件,并字符串转换成字符串列表
        docList.append(wordList)
        fullText.append(wordList)
        classList.append(0)  # 标记正常邮件,0表示正常文件
    vocabList = createVocabList(docList)  # 创建词汇表,不重复
    trainingSet = list(range(50))
    testSet = []  # 创建存储训练集的索引值的列表和测试集的索引值的列表
    for i in range(10):  # 从50个邮件中,随机挑选出40个作为训练集,10个做测试集
        randIndex = int(random.uniform(0, len(trainingSet)))  # 随机选取索索引值
        testSet.append(trainingSet[randIndex])  # 添加测试集的索引值
        del (trainingSet[randIndex])  # 在训练集列表中删除添加到测试集的索引值
    trainMat = []
    trainClasses = []  # 创建训练集矩阵和训练集类别标签系向量
    for docIndex in trainingSet:  # 遍历训练集
        trainMat.append(setOfWords2Vec(vocabList, docList[docIndex]))  # 将生成的词集模型添加到训练矩阵中
        trainClasses.append(classList[docIndex])  # 将类别添加到训练集类别标签系向量中
    p0V, p1V, pSpam = trainNB0(np.array(trainMat), np.array(trainClasses))  # 训练朴素贝叶斯模型
    errorCount = 0  # 错误分类计数
    for docIndex in testSet:  # 遍历测试集
        wordVector = setOfWords2Vec(vocabList, docList[docIndex])  # 测试集的词集模型
        if classifyNB(np.array(wordVector), p0V, p1V, pSpam) != classList[docIndex]:  # 如果分类错误
            errorCount += 1  # 错误计数加1
            print("分类错误的测试集:", docList[docIndex])
    print('错误率:%.2f%%' % (float(errorCount) / len(testSet) * 100))

下面附上运行截图,多次测试划分不同的训练集和测试集后,发现总体错误率稳定在10左右
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

总结

朴素贝叶斯的优点

  • 在数据较少的情况下仍然有效,可以处理多类别问题
  • 通过计算概率来进行分类,对数据缺失具有较强的鲁棒性

朴素贝叶斯缺点

  • 默认各属性间完全独立,但这个假设在现实中很难成立,解决大量问题时会忽略掉属性间的联系带来的信息量
  • 依赖于先验概率,一旦先验概率自身的设计存在问题,模型精度将大幅度的收到影响
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值