阅读一篇“Non-rigid Point Cloud Registration with Neural Deformation Pyramid”论文,对里面的pytorch框架的代码进行分析,然后讨论如何迁移到mindspore框架。
一些很有用的学习的文档:(关于pytorch和mindspore)
Pytorch与mindspore API 映射表:
PyTorch与MindSpore API映射表 | MindSpore 2.0 文档 | 昇思MindSpore社区
Mindspore教程:
MindSpore教程 | MindSpore 2.0 教程 | 昇思MindSpore社区
迁移指南:
补充迁移的本质:API替换+计算图逻辑调整
迁移指南概述 | MindSpore 2.0 文档 | 昇思MindSpore社区
mindspore与pytorch的典型区别:
与PyTorch典型区别 | MindSpore 2.0 文档 | 昇思MindSpore社区
Mindspore/models:
迁移的核心思路
目标:保持模型功能一致的前提下,将PyTorch代码改写为MindSpore代码。
关键差异:
API名称不同:类似功能的函数可能有不同命名(如torch.nn → mindspore.nn)。
计算图机制:PyTorch默认动态图,MindSpore默认静态图(需显式定义网络结构)。
设备管理:PyTorch用to(device),MindSpore用context.set_context(device_target="GPU")。
该篇论文代码解析与迁移思路:
金字塔nets代码分析:
代