pytorch迁移mindspore案例的学习记录

阅读一篇“Non-rigid Point Cloud Registration with Neural Deformation Pyramid”论文,对里面的pytorch框架的代码进行分析,然后讨论如何迁移到mindspore框架。

一些很有用的学习的文档:(关于pytorch和mindspore)

Pytorch与mindspore API 映射表:

PyTorch与MindSpore API映射表 | MindSpore 2.0 文档 | 昇思MindSpore社区

Mindspore教程:

MindSpore教程 | MindSpore 2.0 教程 | 昇思MindSpore社区

迁移指南:

补充迁移的本质:API替换+计算图逻辑调整

迁移指南概述 | MindSpore 2.0 文档 | 昇思MindSpore社区

mindspore与pytorch的典型区别:

与PyTorch典型区别 | MindSpore 2.0 文档 | 昇思MindSpore社区

Mindspore/models:

models: Models of MindSpore

迁移的核心思路

目标:保持模型功能一致的前提下,将PyTorch代码改写为MindSpore代码。

关键差异:

API名称不同:类似功能的函数可能有不同命名(如torch.nn → mindspore.nn)。

计算图机制:PyTorch默认动态图,MindSpore默认静态图(需显式定义网络结构)。

设备管理:PyTorch用to(device),MindSpore用context.set_context(device_target="GPU")。

该篇论文代码解析与迁移思路:

金字塔nets代码分析:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值