About VTA
【Text】
The Versatile【通用的】 Tensor Accelerator (VTA) is an extension of the TVM framework designed to advance deep learning and hardware innovation. VTA is a programmable accelerator that exposes a RISC-like programming abstraction to describe compute and memory operations at the tensor level. We designed VTA to expose the most salient【显著的,突出的】 and common characteristics of mainstream deep learning accelerators, such as tensor operations, DMA load/stores, and explicit compute/memory arbitration【仲裁】.
通用张量加速器(VTA)是TVM框架的扩展,旨在促进深度学习和硬件创新。VTA是一个可编程加速器,它公开了一个类RISC(精简指令集计算机)的编程抽象,以描述张量级别上的计算和内存操作。我们设计VTA是为了揭示主流深度学习加速器最显著和常见的特性,如张量运算、DMA负载/存储和显式计算/内存仲裁。
VTA is more than a standalone accelerator design: it’s an end-to-end solution that includes drivers, a JIT【Just in Time,准时制生产方式】 runtime【运行时系统】【Con:即时编译器】, and an optimizing compiler stack based on TVM. Th