- 博客(7)
- 收藏
- 关注
原创 Datawhale X 李宏毅苹果书 AI夏令营第五期深度学习入门 task 3
通过本篇的学习,我想我们可以回答上一篇的问题了。“神经网络做宽还是做深,怎么设计一个神经网络的结构?怎么选择激活函数?迭代次数越多越好吗?什么是过拟合问题,我们该如何解决?其实从实际问题的性质、数据本身与模型的实践表现出发,这些问题都会迎刃而解。参考文献与图片来源:1. 《深度学习详解》李宏毅!!
2024-08-29 11:55:04
1907
原创 Datawhale X 李宏毅苹果书 AI夏令营第五期深度学习入门 task 2
在此篇中,我们认识到线性模型的局限性,线性与非线性曲线之间的转化,还有BP神经网路的构建。通过非线性模型,我们能够做出更复杂灵活的决策了。但我们开始要考虑到神经网络模型的设计问题了......例如,神经网络做宽还是做深,怎么设计一个神经网络的结构?怎么选择激活函数?迭代次数越多越好吗?什么是过拟合问题,我们该如何解决?如何衡量一个神经网络模型的性能?看看我们能否在下一篇文章解决这些问题......参考文献与图片来源:1. 《深度学习详解》李宏毅!!%20b%20b。
2024-08-28 11:21:30
898
原创 Datawhale X 李宏毅苹果书 AI夏令营第五期 深度学习入门(1)
首先,我们应该根据现实问题来确定机器学习的任务。在我的理解中,回归关心的是解决预测连续数值的问题,而分类解决的是离散数值的问题。比如,我们根据以往的天气数据来预测未来的降水量是多少就是一个回归问题,因为未来下多少降水量都是有可能的,数值可以是连续的;如果我们想判断水有没有沸腾就是一个分类问题,因为只有两种可能性,沸腾(True=1)和没有沸腾(False=0),数值是离散的,两者除外没有其他情况。如果想生成某个对象且对象具有结构化特征,就是结构化学习,例如生成一篇日记。
2024-08-22 17:43:43
706
原创 Datawhale AI夏令营学习笔记 (3)
本篇中我们完成了对机器学习的优化与深度学习的尝试,我们在此过程中学到了很多东西!未来,也许我们还会对这两部分进行优化......!!#机器学习 #电力预测赛 #Datawhale AI夏令营。
2024-07-20 08:27:21
2198
原创 Datawhale AI 夏令营学习笔记(2)
最后,我们保存得到的预测数据并提交,得到分数。# 6. 保存结果文件到本地# 1. 导入所需模块import sysimport osimport gc# 2. 读取训练集和测试集# 使用 read_csv() 函数从文件中读取训练集数据,文件名为 'train.csv'# 使用 read_csv() 函数从文件中读取测试集数据,文件名为 'train.csv'# 3. 进行特征工程# 合并训练数据和测试数据,并进行排序# 历史平移# 窗口统计# 进行数据切分# 确定输入特征。
2024-07-17 20:40:49
2055
原创 Datawhale AI 夏令营学习笔记(1)
至此,我们用数学公式简单地跑通了该赛事。但我们仍有很大的改进空间,下一篇我们将尝试使用模型和算法对数据进行回归预测。可见,评分是以预测值与实际值的均值方差。即是说评分越小说明预测值与实际值越拟合,也就是回归预测效果越好。可以看出这是一道关于电力消耗预测的题目,我们不难联想到使用时序预测模型,对数据进行回归处理。我们可以初步猜测,如果想得到一个比较好的预测效果,我们需要处理这四个特征字段。我们尝试直接求得训练集的一部分的target均值进行。这显然是一个标准结构化的数据。首先,我们可以先简单。
2024-07-17 09:59:16
319
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人