Datawhale AI 夏令营学习笔记(1)

Task 1: 跑通baseline

        首先,我们可以先简单阅读题目

        可以看出这是一道关于电力消耗预测的题目,我们不难联想到使用时序预测模型,对数据进行回归处理。

        然后,我们再看看数据类型

        这显然是一个标准结构化的数据。

        我们可以初步猜测,如果想得到一个比较好的预测效果,我们需要处理这四个特征字段。

        接着,我们再看看评分规则

        可见,评分是以预测值与实际值的均值方差。即是说评分越小说明预测值与实际值越拟合,也就是回归预测效果越好。

        我们尝试直接求得训练集的一部分的target均值进行预测,代码如下。

# 1. 导入需要用到的相关库
# 导入 pandas 库,用于数据处理和分析
import pandas as pd
# 导入 numpy 库,用于科学计算和多维数组操作
import numpy as np

# 2. 读取训练集和测试集
# 使用 read_csv() 函数从文件中读取训练集数据,文件名为 'train.csv'
train = pd.read_csv('./data/train.csv')
# 使用 read_csv() 函数从文件中读取测试集数据,文件名为 'train.csv'
test = pd.read_csv('./data/test.csv')

# 3. 计算训练数据最近11-20单位时间内对应id的目标均值
target_mean = train[train['dt']<=20].groupby(['id'])['target'].mean().reset_index()

# 4. 将target_mean作为测试集结果进行合并
test = test.merge(target_mean, on=['id'], how='left')

# 5. 保存结果文件到本地
test[['id','dt','target']].to_csv('submit.csv', index=None)

        上传得到一个初始分数:

        

        至此,我们用数学公式简单地跑通了该赛事。但我们仍有很大的改进空间,下一篇我们将尝试使用模型和算法对数据进行回归预测。

        感谢Datawhale为广大学习者提供的一切!!!

#机器学习 #电力预测赛  #Datawhale AI夏令营

  • 9
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值