C++过河(动态规划dp)

本文介绍了一个利用动态规划求解C++过河问题的算法。问题设定为有n个小朋友需要过桥,每次最多两人且需携带手电筒返回。每个小朋友过桥时间不同,目标是最小化所有小朋友过桥的总时间。输入输出格式及样例给出,解决方案包括考虑让花费时间最少的人负责送手电筒并搭配其他小朋友过桥。
摘要由CSDN通过智能技术生成

C++过河(动态规划dp)

在一个夜黑风高的晚上,有 n 个小朋友在桥的这边,现在他们需要过桥,但是由于桥很窄,每次只允许不超过两人通过,他们只有一个手电筒,所以每次过桥后,需要有人把手电筒带回来,第 i 号小朋友过桥的时间为 a[i],两个人过桥的总时间为二者中时间长者。问所有小朋友过桥的总时间最短是多少。
输入格式
第一行输入一个整数 n,表示有 n 个小朋友。
第二行有 n 个整数 ai ,ai表示第 i个小朋友过河需要的时间。
输出格式
输出一个整数,表示所有小朋友过河所需要的时间。
输出时每行末尾的多余空格,不影响答案正确性
要求使用「文件输入输出」的方式解题,输入文件为 bridge.in,输出文件为 bridge.out
样例输入
4
1 2 5 10
样例输出
17

采用dp:
1.让花费时间最少的人把手电筒送过来,然后和第 i 个人一起过河
2.让花费时间最少的人把电筒送过来,然后第 i 个人和另外一个人一起过河,由于花费时间最少的人在这边,所以下一次送手电筒过来的一定是花费次少的,送过来后花费最少的和花费次少的一起过河,解决问题

#include<iostream>
#include<cstdio>
#include<algorithm>
using namespace std
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值