算法作业-求解袋鼠过河问题(dp)

本文探讨了一道关于动态规划的算法题目——袋鼠过河。通过理解dp[i + j] = std::min(dp[i] + 1, dp[i + j]);这一表达式,解释了如何解决该问题。文章指出,题目对于是否将首次跳上木桩计入弹跳次数的说明不清晰,对dp[0]的设定存在疑惑。" 106471230,8728415,MyBatis使用PageHelper分页实战,"['MyBatis', '分页插件', '数据库', 'Java', '数据库操作']
摘要由CSDN通过智能技术生成

题目:
在这里插入图片描述
本题是一个简单的dp问题,只需要知道表达式dp[i + j] = std::min(dp[i] + 1, dp[i + j]);就行了,这道题我唯一的迷惑就是不知道跳上第一个木桩算不算一次,这里涉及到dp[0]的取值。如果按照所给答案等于4来看的话,就算一次弹跳了。个人感觉这道题题意给得不够明确。

#include<iostream>
#include<algorithm>
#include<vector>

using std::cin;
using std
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值