Alyona has a tree with n vertices. The root of the tree is the vertex 1. In each vertex Alyona wrote an positive integer, in the vertex i she wrote ai. Moreover, the girl wrote a positive integer to every edge of the tree (possibly, different integers on different edges).
Let's define dist(v, u) as the sum of the integers written on the edges of the simple path from v to u.
The vertex v controls the vertex u (v ≠ u) if and only if u is in the subtree of v and dist(v, u) ≤ au.
Alyona wants to settle in some vertex. In order to do this, she wants to know for each vertex v what is the number of vertices u such that v controls u.
The first line contains single integer n (1 ≤ n ≤ 2·105).
The second line contains n integers a1, a2, ..., an (1 ≤ ai ≤ 109) — the integers written in the vertices.
The next (n - 1) lines contain two integers each. The i-th of these lines contains integers pi and wi (1 ≤ pi ≤ n, 1 ≤ wi ≤ 109) — the parent of the (i + 1)-th vertex in the tree and the number written on the edge between pi and (i + 1).
It is guaranteed that the given graph is a tree.
Print n integers — the i-th of these numbers should be equal to the number of vertices that the i-th vertex controls.
5 2 5 1 4 6 1 7 1 1 3 5 3 6
1 0 1 0 0
5 9 7 8 6 5 1 1 2 1 3 1 4 1
4 3 2 1 0
In the example test case the vertex 1 controls the vertex 3, the vertex 3 controls the vertex 5 (note that is doesn't mean the vertex 1 controls the vertex 5).
题意:一棵根节点为1的树,每个点都有点值a[i],每条边也有权值,dist(v, u)表示从v到u边权和,当u时v的子孙并且dist(v, u)<=a[u]时u就受v控制,输出每个结点能控制的结点数。
思路:如果v可以控制u,那么从v到u的路上的所有结点都可以控制u,因为从v到u路上的dist(vi, u)是递减的,可以每次遍历一个点的时候,二分找出根节点到当前点i路径上点,找出dist(j, i)刚好大于a[i]的点,使得ans[j]--,而后遍历当前点i的所有儿子结点k,ans[i] += ans[k]。
#include <bits/stdc++.h>
using namespace std;
#define maxn 200010
#define ll long long int
vector<ll> val[maxn];
vector<int> G[maxn];
vector<pair<ll, int> > que;
ll dis[maxn], a[maxn];
int ans[maxn];
void dfs(int x, int fa){
ans[x] = 1;
ll t = dis[x] - a[x];
int pos = lower_bound(que.begin(), que.end(), make_pair(t, 0))-que.begin();
pos--;
if(pos>=0) ans[que[pos].second]--;
que.push_back(make_pair(dis[x], x));
for(int i = 0;i < G[x].size();i++){
int y = G[x][i];
if(y == fa) continue;
dis[y] = dis[x] + val[x][i];
dfs(y, x);
ans[x] += ans[y];
}
que.pop_back();
}
int main()
{
int n, i;
scanf("%d", &n);
for(i = 1;i <= n;i++) scanf("%I64d", &a[i]);
int v;
ll cost;
for(i = 2;i <= n;i++){
scanf("%d %I64d", &v, &cost);
val[i].push_back(cost);
val[v].push_back(cost);
G[i].push_back(v);
G[v].push_back(i);
}
dfs(1, -1);
for(i = 1;i <= n;i++) printf("%d%c", ans[i]-1, i==n?'\n':' ');
}