题意
给定一棵树,每个节点有一个值a(u),每条边有一个权值w,定义节点u控制节点v当且仅当dis(u,v) <= a(v)。要求每个节点控制的点数。
链接
思路
首先求出每个节点到根节点的前缀边权和pre[u],那么dis(u,v) = dis[v] - dis[u] -> dis[v] - dis[u] <= a[v] -> dis[v] - a[v] <= dis[u].问题转化为了求树上节点的子节点的a值比该节点的b值小的点数。可以用dfs序转化为求区间中小于定值的数个数。离线树状数组即可。
代码
using namespace std;
typedef struct node node;
typedef struct query query;
struct query
{
int l,r;
long long a,b;
int id;
/* data */
}q[201000];
struct node
{
int to,next,w;
}edge[201000];
int cnt,head[201000];
long long wu[201000],pre[201000];
query num[201000];
long long tree[601000];
long long ans[201000];
int n,m,maxn,dfs_clock,qnum;
void update(int x,int b){
for(;x <= n;x += lowbit(x)){
tree[x] += b;
}
}
int cmp(query a,query b){
return a.a < b.a;
}
int cmp1(query a,query b){
return a.b < b.b;
}
long long get(int x){
long long res = 0;
for(;x;x -= lowbit(x)){
res += tree[x];
}
return res;
}
void add(int u,int v,int w){
edge[cnt].to = v;
edge[cnt].next = head[u];
edge[cnt].w = w;
head[u] = cnt++;
}
void dfs(int u,int fa,int w){
pre[u] = pre[fa] + w;
int tmp = qnum++;
q[tmp].l = ++dfs_clock;
q[tmp].b = pre[u];
q[tmp].a = pre[u] - wu[u];
q[tmp].id = u;
for(int i =head[u];i != -1;i = edge[i].next){
dfs(edge[i].to,u,edge[i].w);
}
q[tmp].r = dfs_clock;
}
void solve(){
for(int i = 0;i < n;i ++){
num[i] = q[i];
}
sort(num,num + n,cmp);
sort(q,q+n,cmp1);
int now = 0;
for(int i = 0;i < n;i ++){
//printf("i%d %d %d\n",i,q[i].l,q[i].r );
while(now < n && num[now].a <=q[i].b){
update(num[now].l,1);
now++;
}
ans[q[i].id] = get(q[i].r) - get(q[i].l - 1);
ans[q[i].id] --;
}
for(int i = 1;i <= n;i ++) printf("%lld%c",ans[i],i == n?'\n':' ');
}
void debug(){
}
int main(){
scanf("%d",&n);
for(int i =1;i <= n;i ++) scanf("%lld",&wu[i]);
memset(head,-1,sizeof(head));
memset(tree,0,sizeof(tree));
qnum = 0;
cnt = 0;
dfs_clock = 0;
int f,w;
for(int i = 2;i <= n;i ++){
scanf("%d%d",&f,&w);
add(f,i,w);
}
pre[0] = 0;
dfs(1,0,0);
solve();
return 0;
}