【STABLE BASELINE3】自定义环境代码,PPO,SAC,离散动作/连续状态

遇到的一些问题

明明用的正常的代码,结果报错,还以为是程序本身有问题

The algorithm only supports (<class 'gym.spaces.discrete.Discrete'>,) as action spaces but Discrete(4) was provided

结果是库的问题,估计是代码比较老了,兼容性不高?
正确:

from gym import spaces

错误:

import gymnasium as gym

代码示例

import os
import sys

import gymnasium
import gymnasium as gym
import pandas as pd
from gymnasium import spaces
from matplotlib import pyplot as plt

from stable_baselines3 import PPO, SAC, A2C, DDPG
from stable_baselines3.common.callbacks import CheckpointCallback, EveryNTimesteps
from stable_baselines3.common.env_util import make_vec_env
import gym
import numpy as np
from gym import spaces
from gym.spaces import Box, Discrete
from pylab import mpl
sys.modules["gym"] = gymnasium

# 设置显示中文字体
mpl.rcParams["font.sans-serif"] = ["SimHei"]
# import ray
e_sell = 0.3
price = pd.read_csv('.//data//price_data.csv')  # 已经除于1000了
price = np.array(price['实时电价']).flatten()

class CustomEnv(gym.Env):
    """Custom Environment that follows gym interface."""

    metadata = {"render_modes": ["human"], "render_fps": 30}

    def __init__(self, applience):
        self.title = applience.title[0] if type(applience.title) == tuple else applience.title
        self.power_rating = np.array(applience.power_rating, dtype=float).flatten()[0]
        self.T_ini = applience.T_ini  # 规定的启动时间
        self.T_end = applience.T_end  # 规定的结束时间
        self.T_last = applience.T_last  # 规定的运行时间
        self.T_run = 0  # 记录已经运行的时间
        self.ds = applience.ds  # dissatisfaction parameter 0.045 0.07
        self.t = 0
        self.prices = price
        self.n_state_space = 3  # 状态,[是否工作时间,剩余工作时间,已经工作时间]
        # self.n_action_space = 1  # 动作个数,[0, 1]  1:on  0:off
        self.n_action_space = 2  # 动作个数,[0, 1]  1:on  0:off
        self.n_action_type = 'Discrete'  # 动作个数,[0, 1]  1:on  0:off
        # self.observation_space = spaces.Box(low=-float('inf'), high=float('inf'), shape=(self.n_state_space,),
        #                                     dtype=np.float32)
        self.action_space = spaces.Discrete(self.n_action_space)
        # self.action_space = spaces.Discrete(self.n_action_space)
        # self.action_space = spaces.Box(low=-1, high=1, shape=(self.n_action_space,),
        #                                dtype=np.float32)
        self.observation_space = spaces.Box(low=-float('inf'), high=float('inf'), shape=(self.n_state_space,))
        # self.action_space = Box(low=-1, high=1, shape=(self.n_action_space,))
        self.run_list = np.zeros(24)  # 记录运行过程
        self.power_list = np.zeros(24)  # 记录每个时刻的功率大小
        self.reward_list = np.zeros(24)  # 记录每个时刻的奖励值
        self.reward_detail = np.zeros([24, 2])  # 记录每个时刻的奖励值

    def step(self, action):
        # 不在运行时间范围内
        if self.T_ini <= self.t % 24 < self.T_end:  # 在运行范围内
            cost_penalty = 0
            if self.T_run == 0:  # 还没有开始运行
                if self.t < self.T_end - self.T_last:  # 还能完成运行任务
                    if action > 0:
                        power = self.power_rating
                        self.T_run += 1
                        self.run_list[self.t] = self.T_run
                        cost_penalty += self.ds
                    else:
                        power = 0
                        self.run_list[self.t] = 0
                        cost_penalty += self.ds
                else:
                    power = self.power_rating
                    self.T_run += 1
                    self.run_list[self.t] = self.T_run
                    cost_penalty += self.ds
                    if action <= 0:
                        cost_penalty += 10
            elif self.T_last > self.T_run > 0:  # 开始运行了,还未到指定时间
                power = self.power_rating
                self.T_run += 1
                self.run_list[self.t] = self.T_run
                cost_penalty += self.ds
                if action <= 0:
                    cost_penalty += 10
            else:  # 已到运行时间
                power = 0
                self.run_list[self.t] = 0
            if power >= 0:
                cost_energy = self.prices[self.t] * power
            else:
                cost_energy = e_sell * self.prices[self.t] * power
            self.reward_list[self.t] = -cost_energy - cost_penalty
            self.reward_detail[self.t] = [cost_energy, cost_penalty]
            self.power_list[self.t] = power
            self.t = (self.t + 1) % 24
        else:  # 不在运行范围内
            self.run_list[self.t] = 0
            self.power_list[self.t] = 0
            self.reward_list[self.t] = 0
            self.reward_detail[self.t] = [0, 0]
            self.t = (self.t + 1) % 24

        if self.T_ini <= self.t < self.T_end:  # 在运行范围内
            observation = [1, (self.T_end - self.t) / (self.T_end - self.T_ini), self.T_run / self.T_last]
        else:
            observation = [0, 0, 0]

        reward = self.reward_list[self.t - 1] if self.t > 0 else self.reward_list[24 - 1]

        dones = 1 if self.t == 12 else 0

        return observation, reward, dones, {}

    def reset(self, seed=None, options=None):
        self.t = 12
        self.T_run = 0  # 记录已经运行的时间
        self.power_list = np.zeros(24)  # 记录每个时刻的功率大小
        self.reward_list = np.zeros(24)  # 记录每个时刻的奖励值
        self.run_list = np.zeros(24)  # 记录每个时刻的功率大小
        self.reward_detail = np.zeros([24, 2])  # 记录每个时刻的奖励值
        if self.T_ini <= self.t < self.T_end:  # 在运行范围内
            observation = [1, (self.T_end - self.t) / (self.T_end - self.T_ini), self.T_run / self.T_last]
        else:
            observation = [0, 0, 0]
        return observation

    def get_output(self, visualize=False):
        column = ['电价', self.title + '功率', self.title + '运行状态', self.title + '电费',
                  self.title + '舒适度', self.title + '总成本']
        data = np.concatenate([price.reshape(24, 1), self.power_list.reshape(24, 1), self.run_list.reshape(24, 1),
                               self.reward_detail, self.reward_list.reshape(24, 1)], axis=1)
        data = pd.DataFrame(data, columns=column)
        if visualize:
            figure = plt.figure(tight_layout=True)
            # 表示1行2列的第一个区域
            cost_e, cost_c, cost_a = sum(data[self.title + '电费']), sum(data[self.title + '舒适度']), \
                                     sum(data[self.title + '总成本'])
            cost_e, cost_c, cost_a = "{:.2f}".format(cost_e), "{:.2f}".format(cost_c), "{:.2f}".format(cost_a)
            plt.subplot(3, 1, 1)
            plt.plot(range(24), price[:24], linestyle=':', marker='o', color="red")
            plt.xlabel("电价")
            plt.title(f'{cost_e, cost_c, cost_a}')
            # 表示1行2列的第二个区域
            plt.subplot(3, 1, 2)
            plt.plot(range(24), data[self.title + '运行状态'], linestyle='-', marker='s', color="black")
            plt.xlabel(self.title + '运行状态')
            # 表示1行2列的第二个区域
            plt.subplot(3, 1, 3)
            plt.plot(range(24), data[self.title + '功率'], linestyle='-', marker='s', color="blue")
            plt.xlabel(self.title + '功率')
            plt.show()
        return data

class wm2():
    def __init__(self):
        self.title = 'WM',
        self.power_rating = 0.7
        self.T_ini = 15
        self.T_end = 23
        self.T_last = 3
        self.ds = 0.2  # dissatisfaction parameter 0.045 0.07
        self.thita = 0.001
        self.dispatch = 0


def output_model_detail(model, env):
    episode_reward = 0
    state = env.reset()
    record = []
    for step in range(24):
        action, _states = model.predict(state)
        # print(state)
        obs, rewards, dones, info = env.step(action)
        # print(action, rewards)
        # print(info)
        if not step:
            record_name = list(info.keys())
            record.append(list(info.values()))
        else:
            record.append(list(info.values()))
        episode_reward += rewards
        if dones:
            break
        state = obs
    record = np.array(record)
    record_d = pd.DataFrame(record)
    record_d.columns = record_name
    output = env._get_output()
    output.to_csv(env.env_name + '输出结果.csv', header=True, encoding='utf_8_sig')
    return episode_reward

env = CustomEnv(wm2())
# 创建一个PPO模型
model = PPO("MlpPolicy", env, verbose=1)

# 创建一个CheckpointCallback,用于保存最优模型
checkpoint_callback = CheckpointCallback(save_freq=1000, save_path='./logs/')

# 训练模型
model.learn(total_timesteps=50000, callback=checkpoint_callback, tb_log_name="ppo_cartpole")

# 保存最优模型和归一化器
best_model_path = os.path.join(checkpoint_callback.save_path, 'best_model')
model.save(best_model_path)

# 加载最优模型和归一化器
loaded_model = PPO.load(best_model_path, env=env)

obs = env.reset()
while True:
    action, _states = model.predict(obs)
    print(obs, action)
    obs, rewards, dones, info = env.step(action)
    if dones:
        break

output = env.get_output(visualize=True)
output.to_csv(f'{env.title}_输出结果.csv', header=True, encoding='utf-8')
Stable Baselines3(SB3)是一个基于PyTorch的强化学习算法库,其中的Soft Actor-Critic(SAC)算法是一种常用的强化学习算法,适用于连续动作空间的任务。以下是SAC算法在Stable Baselines3中的使用介绍: ### 安装Stable Baselines3 首先,确保你已经安装了Stable Baselines3。如果没有安装,可以使用以下命令进行安装: ```bash pip install stable-baselines3 ``` ### 使用SAC算法 以下是一个简单的示例,展示了如何使用SAC算法来训练一个智能体在连续动作空间的任务中学习: ```python import gym from stable_baselines3 import SAC from stable_baselines3.common.evaluation import evaluate_policy # 创建环境 env = gym.make(&#39;Pendulum-v1&#39;) # 创建SAC模型 model = SAC(&#39;MlpPolicy&#39;, env, verbose=1, learning_rate=1e-3, buffer_size=100000, learning_starts=1000, batch_size=256) # 训练模型 model.learn(total_timesteps=100000) # 保存模型 model.save("sac_pendulum") # 加载模型 # model = SAC.load("sac_pendulum") # 评估模型 mean_reward, std_reward = evaluate_policy(model, env, n_eval_episodes=10) print(f"Mean reward: {mean_reward:.2f} +/- {std_reward:.2f}") ``` ### 参数解释 - `policy`:策略网络,可以是字符串如`&#39;MlpPolicy&#39;`或自定义的策略网络。 - `env`:环境,OpenAI Gym风格的环境。 - `verbose`:日志级别,0为不输出,1为详细输出。 - `learning_rate`:学习率。 - `buffer_size`:经验回放缓冲区的大小。 - `learning_starts`:开始训练前的步数。 - `batch_size`:每次更新的批大小。 ### 常见问题 1. **如何自定义策略网络?** 可以通过继承`BasePolicy`类来自定义策略网络。 2. **如何调整超参数?** 根据具体任务的需求,可以通过调整学习率、批大小、缓冲区大小等超参数来优化模型性能。 3. **如何保存和加载模型?** 使用`model.save("filename")`保存模型,使用`model = SAC.load("filename")`加载模型。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值