题目链接
Description
PS国是一个拥有诸多城市的大国,国王Louis为城市的交通建设可谓绞尽脑汁。Louis可以在某些城市之间修建道路,在不同的城市之间修建道路需要不同的花费。Louis希望建造最少的道路使得国内所有的城市连通。但是由于某些因素,城市之间修建道路需要的花费会随着时间而改变,Louis会不断得到某道路的修建代价改变的消息,他希望每得到一条消息后能立即知道使城市连通的最小花费总和, Louis决定求助于你来完成这个任务。
Input
文件第一行包含三个整数N,M,Q,分别表示城市的数目,可以修建的道路个数,及收到的消息个数。 接下来M行,第i+1行有三个用空格隔开的整数Xi,Yi,Zi(1≤Xi,Yi≤n, 0≤Zi≤50000000),表示在城市Xi与城市Yi之间修建道路的代价为Zi。接下来Q行,每行包含两个数k,d,表示输入的第k个道路的修建代价修改为d(即将Zk修改为d)。
Output
输出包含Q行,第i行输出得知前i条消息后使城市连通的最小花费总和。
Sample Input
5 5 3
1 2 1
2 3 2
3 4 3
4 5 4
5 1 5
1 6
1 1
5 3
Sample Output
14
10
9
HINT
【数据规模】 对于20%的数据, n≤1000,m≤6000,Q≤6000。 有20%的数据,n≤1000,m≤50000,Q≤8000,修改后的代价不会比之前的代价低。 对于100%的数据, n≤20000,m≤50000,Q≤50000。
题解
先膜拜大神的题解:http://blog.sina.com.cn/s/blog_6e63f59e0101blum.html
其实这道题思路是蛮清晰的,首先是cdq分治,那么对于一个l~r的操作序列我们有以下两种处理:
1. Contraction
把 L~R要修改的所有边权暂时标记为-∞;
对图做 MST;
此时观察图中不是-∞但被选入 MST的边集;
它们在 L~R的询问中也一定会被选入;
于是可以直接先用这些边把点集做合并操作。这样图的点数被缩小;
还原边权标记.
2. Reduction
把 L~R要修改的所有边权暂时标记为+∞;
对图做 MST;
此时观察图中不是+∞但没被选入MST的边集;
它们在 L~R的询问中是无意义的,可以直接删除。这样图的边数被缩小;
还原边权标记.
然后就是在L=R的时候修改操作生效。
对于每一层递归都建一个图,比较好操作一些。
然而细节是真的多。。。完全的写挂了只能大力模仿神犇的代码OTZ。
虽然思路还是很清晰的。。不过考试碰到这种题以我的码力可能就滚粗了吧。
#include<bits/stdc++.h>
using namespace std;
inline int read(){
int x = 0, f = 1; char c = getchar();
while(!isdigit(c)) { if(c == '-') f = -1; c = getchar(); }
while(isdigit(c)) { x = x * 10 + c - '0'; c = getchar(); }
return x * f;
}
typedef long long ll;
const int N = 20000 + 10, M = 50000 + 10, inf = 0x3f3f3f3f;
struct Edge{int u, v, w, pos;}e[23][M], d[M], t[M];
struct Query{int x, y;}q[M];
int n, m, Q;
int fa[N], siz[N], sum[N];
int c[M], a[M];
ll ans[M];
bool cmp(Edge a, Edge b){return a.w < b.w;}
int find(int x){return x == fa[x] ? x : fa[x] = (find(fa[x]));}
void clear(int tot){
for(int i = 1; i <= tot; i++){
fa[d[i].u] = d[i].u;
fa[d[i].v] = d[i].v;
siz[d[i].u] = siz[d[i].v] = 1;
}
}
void merge(int x, int y){
if(siz[x] > siz[y]) siz[x] += siz[y], fa[y] = x;
else siz[y] += siz[x], fa[x] = y;
}
void reduction(int &tot){
int tmp = 0;
clear(tot);
sort(d+1, d+tot+1, cmp);
for(int i = 1; i <= tot; i++){
if(find(d[i].u) != find(d[i].v)){
merge(fa[d[i].u], fa[d[i].v]);
t[++tmp] = d[i];
c[d[i].pos] = tmp;
}
else if(d[i].w == inf){
t[++tmp] = d[i];
c[d[i].pos] = tmp;
}
}
for(int i = 1; i <= tmp; i++)
d[i] = t[i];
tot = tmp;
}
void contraction(int &tot, ll &cnt){
int tmp = 0;
clear(tot);
sort(d+1, d+tot+1, cmp);
for(int i = 1; i <= tot; i++)
if(find(d[i].u) != find(d[i].v)){
merge(fa[d[i].u], fa[d[i].v]);
t[++tmp] = d[i];
}
for(int i = 1; i <= tmp; i++){
fa[t[i].u] = t[i].u;
fa[t[i].v] = t[i].v;
siz[t[i].u] = siz[t[i].v] = 1;
}
for(int i = 1; i <= tmp; i++)
if(t[i].w != -inf && find(t[i].u) != find(t[i].v)){
merge(fa[t[i].u], fa[t[i].v]);
cnt += t[i].w;
}
tmp = 0;
for(int i = 1; i <= tot; i++)
if(find(d[i].u) != find(d[i].v)){
t[++tmp] = d[i];
c[d[i].pos] = tmp;
t[tmp].u = fa[d[i].u];
t[tmp].v = fa[d[i].v];
}
for(int i = 1; i <= tmp; i++) d[i] = t[i];
tot = tmp;
}
void solve(int l, int r, int now, ll cnt){
int tot = sum[now];
if(l == r) a[q[l].x] = q[l].y;
for(int i = 1; i <= tot; i++) e[now][i].w = a[e[now][i].pos];
for(int i = 1; i <= tot; i++) d[i] = e[now][i], c[d[i].pos] = i;
if(l == r){
ans[l] = cnt;
clear(tot);
sort(d+1, d+tot+1, cmp);
for(int i = 1; i <= tot; i++)
if(find(d[i].u) != find(d[i].v)){
merge(fa[d[i].u], fa[d[i].v]);
ans[l] += d[i].w;
}
return;
}
for(int i = l; i <= r; i++) d[c[q[i].x]].w = -inf;
contraction(tot, cnt);
for(int i = l; i <= r; i++) d[c[q[i].x]].w = inf;
reduction(tot);
for(int i = 1; i <= tot; i++) e[now+1][i] = d[i];
sum[now+1] = tot;
int mid = l + r >> 1;
solve(l, mid, now + 1, cnt);
solve(mid + 1, r, now + 1, cnt);
}
void init(){
n = read(); m = read(); Q = read();
for(int i = 1; i <= m; i++){
e[0][i].u = read();
e[0][i].v = read();
e[0][i].w = read();
e[0][i].pos = i;
a[i] = e[0][i].w;
}
for(int i = 1; i <= Q; i++)
q[i].x = read(), q[i].y = read();
}
void work(){
sum[0] = m;
solve(1, Q, 0, 0);
for(int i = 1; i <= Q; i++)
printf("%lld\n", ans[i]);
}
int main(){
init();
work();
return 0;
}