题目:235. 二叉搜索树的最近公共祖先 - 力扣(LeetCode)
思路:
1.递归函数参数和返回值:参数就是当前节点和两个节点p、q。返回值就是最近的公共祖先,即TreeNode*。
2.终止条件:遇到空节点,返回NULL。
3.单层递归逻辑:因为是二叉搜索树,树中元素值是有序的,如果当前节点cur的值大于p和q的值,说明p和q在cur的左子树上,需要向左遍历,如果当前节点cur的值小于p和q的值,说明p和q在cur的右子树上,需要向右遍历。如果cur的值在[p,q]或者[q,p]之间,说明cur就是p和q的最近公共祖先。
递归实现代码:
class Solution {
public:
TreeNode* traversal(TreeNode* cur, TreeNode* p, TreeNode* q){
if(cur == NULL) return NULL;
if(cur->val > p->val && cur->val > q->val){
TreeNode* left = traversal(cur->left, p, q);
if(left != NULL) return left;
}
if(cur->val < p->val && cur->val < q->val){
TreeNode* right = traversal(cur->right, p, q);
if(right != NULL) return right;
}
return cur;
}
TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q) {
return traversal(root, p, q);
}
};
非递归实现:
class Solution {
public:
TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q) {
if(root == NULL) return NULL;
while(root){
if(root->val > p->val && root->val > q->val){
root = root->left;
}else if(root->val < p->val && root->val < q->val){
root = root->right;
}else{
return root;
}
}
return NULL;
}
};
题目:701. 二叉搜索树中的插入操作 - 力扣(LeetCode)
思路:
1.递归函数返回值和参数:参数就是当前节点和插入的值val,返回值就是根节点。
2.终止条件:遍历到空节点时,把值为val的新节点插入到二叉树里。
3.单层递归逻辑:如果当前节点的值大于val,就往左子树进行插入,因为返回值是根节点的值,所以本层用root->left 和root->right来接住下层新加入节点的返回值,这样一层层的返回,就把节点加入二叉树里了,最后返回整颗树的根节点。
代码:
class Solution {
public:
TreeNode* traversal(TreeNode* cur, int val){
if(cur == NULL) {
TreeNode* node = new TreeNode(val);
return node;
}
if(cur->val > val){
cur->left = traversal(cur->left, val);
}
if(cur->val < val){
cur->right = traversal(cur->right, val);
}
return cur;
}
TreeNode* insertIntoBST(TreeNode* root, int val) {
return traversal(root, val);
}
};
题目:450. 删除二叉搜索树中的节点 - 力扣(LeetCode)
思路:
删除节点有五种情况:
- 第一种情况:没找到删除的节点,遍历到空节点直接返回了
- 找到删除节点:
- 第二种情况:左右孩子都为空(叶子节点),直接删除节点, 返回NULL为根节点
- 第三种情况:删除节点的左孩子为空,右孩子不为空,删除节点,右孩子补位,返回右孩子为根节点
- 第四种情况:删除节点的右孩子为空,左孩子不为空,删除节点,左孩子补位,返回左孩子为根节点
- 第五种情况:左右孩子节点都不为空,则将删除节点的左子树头结点(左孩子)放到删除节点的右子树的最左面节点的左孩子上,返回删除节点右孩子为新的根节点。
代码:
class Solution {
public:
TreeNode* deleteNode(TreeNode* root, int key) {
//第一种情况,没有找到删除的节点,遍历到空节点直接返回
if(root == NULL) return NULL;
//找到删除节点
if(root->val == key){
if(root->left == NULL && root->right == NULL){//第二种情况:左右孩子都为空(叶子节点),直接删除节点, 返回NULL为根节点
delete root;//释放节点内存
return NULL;
}else if(root->left != NULL && root->right == NULL){//第三种情况:删除节点的右孩子为空,左孩子不为空,删除节点,左孩子补位,返回左孩子为根节点
TreeNode* node = root->left;
delete root;
return node;
}else if(root->left == NULL && root->right != NULL){//第四种情况:删除节点的左孩子为空,右孩子不为空,删除节点,右孩子补位,返回右孩子为根节点
TreeNode* node = root->right;
delete root;
return node;
}else{//第五种情况:左右孩子节点都不为空,则将删除节点的左子树头结点(左孩子)放到删除节点的右子树的最左面节点的左孩子上,返回删除节点右孩子为新的根节点。
TreeNode* cur = root->right;
while(cur->left != NULL){ //找右子树最左边的节点
cur = cur->left;
}
cur->left = root->left;//把删除节点的左孩子放到右子树的最左边节点的左孩子上
TreeNode* node = root->right;
delete root;
return node;
}
}
if(root->val > key){
root->left = deleteNode(root->left, key);
}
if(root->val < key){
root->right = deleteNode(root->right, key);
}
return root;
}
};