Spongebob and Joke

Description

While Patrick was gone shopping, Spongebob decided to play a little trick on his friend. The naughty Sponge browsed through Patrick's personal stuff and found a sequence a1, a2, ..., am of length m, consisting of integers from 1 to n, not necessarily distinct. Then he picked some sequence f1, f2, ..., fn of length n and for each number ai got number bi = fai. To finish the prank he erased the initial sequence ai.

It's hard to express how sad Patrick was when he returned home from shopping! We will just say that Spongebob immediately got really sorry about what he has done and he is now trying to restore the original sequence. Help him do this or determine that this is impossible.

Input

The first line of the input contains two integers n and m (1 ≤ n, m ≤ 100 000) — the lengths of sequences fi and bi respectively.

The second line contains n integers, determining sequence f1, f2, ..., fn (1 ≤ fi ≤ n).

The last line contains m integers, determining sequence b1, b2, ..., bm(1 ≤ bi ≤ n).

Output

Print "Possible" if there is exactly one sequence ai, such that bi = fai for all i from 1 to m. Then print m integers a1, a2, ..., am.

If there are multiple suitable sequences ai, print "Ambiguity".

If Spongebob has made a mistake in his calculations and no suitable sequence ai exists, print "Impossible".

Sample Input

Input
3 3
3 2 1
1 2 3
Output
Possible
3 2 1 
Input
3 3
1 1 1
1 1 1
Output
Ambiguity
Input
3 3
1 2 1
3 3 3
Output
Impossible

Hint

In the first sample 3 is replaced by 1 and vice versa, while 2 never changes. The answer exists and is unique.

In the second sample all numbers are replaced by 1, so it is impossible to unambiguously restore the original sequence.

In the third sample fi ≠ 3 for all i, so no sequence ai transforms into such bi and we can say for sure that Spongebob has made a mistake.

3 4

1 2 3

1 2 3 3

输出的是

1 2 3 3

#include<stdio.h>
#include<string.h>
#include<algorithm>
#include<math.h>
#define Max 100001
int b[Max]; 
int ji[Max];
struct node{
	int shu,n;
}s[Max];
int main()
{
	int n,m;
	scanf("%d%d",&n,&m);
	for(int i=1;i<=n;i++)
	{
		scanf("%d",&s[i].shu);	
		s[s[i].shu ].n =i;
		ji[s[i].shu ]++;
	}
	int sum=0,sun=0;
	for(int i=1;i<=m;i++)
	{
		scanf("%d",&b[i]);
		if(ji[b[i]] ==1)
		sum++;
		if(ji[b[i]]>1)
		sun++;
	}
	if(sun+sum<m)
	printf("Impossible\n");
	else 
	if(sun>0)
	 printf("Ambiguity\n");
	 else
	 {
	 	printf("Possible\n");
	 	for(int i=1;i<=m;i++)
	 	{
	 		printf("%d ",s[b[i]].n );
		 }
	 }
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值