白嫖Tesla T4 GPU玩转Stable Diffusion Webui

想要玩stable diffusion,算力不可少,白嫖google colab Tesla T4 GPU 玩转Stable Diffusion Webui

1、google colab上安装stable diffusion webui

在这里插入图片描述https://colab.research.google.com/drive/1qL5eD2VESnop8mrbFcHzMmfzqzmRMMF4?usp=sharing

  • 在google colab中新建Stable Diffusion Webui googlecolab.ipynb文件

  • clone stable diffusion webui项目

!git clone https://github.com/AUTOMATIC1111/stable-diffusion-webui.git
%cd "/content/stable-diffusion-webui"
  • 创建虚拟环境,并进入虚拟环境
!pip install virtualenv
!virtualenv venv
!source venv/bin/activate
  • 安装需要的环境
!pip install -r requirements_versions.txt
!pip install torch==1.13.1+cu117 torchvision==0.14.1+cu117 torchtext==0.14.1 torchaudio==0.13.1 torchdata==0.5.1 --extra-index-url https://download.pytorch.org/whl/cu117
  • 运行,不要忘记在代码执行程程序更改运行时类型gpu

在这里插入图片描述

!python launch.py --gradio-queue --share

在这里插入图片描述

最后会生成一个public link,点击链接打开即可

在这里插入图片描述

2、关于模型及下载
  • Civitai提供了很多模型,可以看看
- 可以在 Hugging Face 搜索模型的下载地址(主要是这个提供下载地址,可以更方便的在google colab中执行)
!git clone https://huggingface.co/luxluna/cuteGirlMix4_v10/resolve/main/cuteGirlMix4_v10.safetensors /content/stable-diffusion-webui/models/Stable-diffusion/cuteGirlMix4_v10.safetensors
- 也可以挂载Google 云盘,通过Google云盘上传模型
from google.colab import drive
drive.mount("/content/gdrive")

%mv /content/gdrive/MyDrive/ColabNotebooks/cuteGirlMix4_v10.safetensors /content/stable-diffusion-webui/models/Stable-diffusion/
3、关于google colab中命令的使用

%: 目录操作

!: 执行操作

### 租用GPU以训练Stable Diffusion模型 为了有效运行并加速Stable Diffusion模型,特别是当本地硬件资源不足时,租用云端GPU成为一种高效的选择。考虑到特定需求,即NVIDIA GPU、至少8GB显存以及适当的操作环境配置[^1],多个云服务平台提供了适合此类任务的服务。 #### 选择合适的云计算服务提供商 一些知名的云计算服务商提供按需付费的GPU实例选项,这些平台通常具备灵活的资源配置能力,允许用户根据项目具体要求定制计算资源: - **Amazon Web Services (AWS)** 提供多种类型的EC2实例,其中P系列和G系列特别适用于机器学习工作负载。 - **Google Cloud Platform (GCP)** 的虚拟机支持附加高性能GPU,并且拥有预构建的Deep Learning VM镜像简化设置过程。 - **Microsoft Azure** 同样供应专门针对AI应用优化过的NDv2/NCasT4_v3等系列VM规格。 上述各平台上均能找到满足最低硬件标准(如NVIDIA Tesla V100或更高级别产品线)及相应软件栈安装指南的信息。 #### 配置与启动GPU实例 一旦选定目标供应商及其提供的合适方案,则应按照官方文档指示完成如下操作: 1. 注册账号并通过验证流程; 2. 创建新项目或进入已有工程空间内; 3. 浏览市场列表挑选含有所需框架版本(PyTorch/TensorFlow)的基础映像作为模板; 4. 定义网络参数、安全组规则确保外部访问权限可控; 5. 发起实例创建请求直至成功部署完毕; 此时即可通过SSH连接至远程服务器执行后续命令行指令来传输数据集、克隆仓库代码库并调整超参设定等内容[^2]。 ```bash # 假设已建立好无密码登录机制的情况下复制整个目录结构 cp -r /gemini/data-1/models /gemini/code/stable-diffusion-webui/ ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值