7-1 哈夫曼编码
给定一段文字,如果我们统计出字母出现的频率,是可以根据哈夫曼算法给出一套编码,使得用此编码压缩原文可以得到最短的编码总长。然而哈夫曼编码并不是唯一的。例如对字符串"aaaxuaxz",容易得到字母 ‘a’、‘x’、‘u’、‘z’ 的出现频率对应为 4、2、1、1。我们可以设计编码 {‘a’=0, ‘x’=10, ‘u’=110, ‘z’=111},也可以用另一套 {‘a’=1, ‘x’=01, ‘u’=001, ‘z’=000},还可以用 {‘a’=0, ‘x’=11, ‘u’=100, ‘z’=101},三套编码都可以把原文压缩到 14 个字节。但是 {‘a’=0, ‘x’=01, ‘u’=011, ‘z’=001} 就不是哈夫曼编码,因为用这套编码压缩得到 00001011001001 后,解码的结果不唯一,“aaaxuaxz” 和 “aazuaxax” 都可以对应解码的结果。本题就请你判断任一套编码是否哈夫曼编码。
输入格式:
首先第一行给出一个正整数 N(2≤N≤63),随后第二行给出 N 个不重复的字符及其出现频率,格式如下:
c[1] f[1] c[2] f[2] … c[N] f[N]
其中c[i]是集合{‘0’ - ‘9’, ‘a’ - ‘z’, ‘A’ - ‘Z’, ‘_’}中的字符;f[i]是c[i]的出现频率,为不超过 1000 的整数。再下一行给出一个正整数 M(≤1000),随后是 M 套待检的编码。每套编码占 N 行,格式为:
c[i] code[i]
其中c[i]是第i个字符;code[i]是不超过63个’0’和’1’的非空字符串。
输出格式:
对每套待检编码,如果是正确的哈夫曼编码,就在一行中输出"Yes",否则输出"No"。
注意:最优编码并不一定通过哈夫曼算法得到。任何能压缩到最优长度的前缀编码都应被判为正确。
输入样例:
7
A 1 B 1 C 1 D 3 E 3 F 6 G 6
4
A 00000
B 00001
C 0001
D 001
E 01
F 10
G 11
A 01010
B 01011
C 0100
D 011
E 10
F 11
G 00
A 000
B 001
C 010
D 011
E 100
F 101
G 110
A 00000
B 00001
C 0001
D 001
E 00
F 10
G 11
输出样例:
Yes
Yes
No
No
#include<stdio.h>
#include<string.h>
#include<stdlib.h>
typedef struct{
int p;
int l,r,w;
}HTNode,*HuffmanTree;
struct Code{
char str[64];
}code[1000];
struct node{
int s1,s2;
};
node Select(HuffmanTree HT,int n,node s)
{
int flag = 0;
for(int i=1;i<=n;i++){
if(HT[i].p==0&&flag==0){
s.s1 = i;
flag = 1;
}
if(HT[i].p==0&&HT[s.s1].w>HT[i].w){
s.s1 = i;
}
}
flag = 0;
for(int i=1;i<=n;i++){
if(flag==0&&HT[i].p==0&&s.s1!=i){
flag = 1;
s.s2 = i;
}
if(HT[i].p==0&&s.s1!=i&&HT[s.s2].w>HT[i].w){
s.s2 = i;
}
}
return s;
}
HuffmanTree HT;
void HuffmanCoding(int w[],int n)
{
if(n<=1) return;
int m = 2*n-1;
HT = (HuffmanTree)malloc((m+1)*sizeof(HTNode));
HTNode *p = HT;
int i = 1;
for(p=HT+1;i<=n;i++,p++)
{
p->p = 0;
p->w = w[i-1];
p->l = 0;
p->r = 0;
}
for(;i<=m;i++,p++)
{
p->p = 0;
p->w = 0;
p->l = 0;
p->r = 0;
}
for(i=n+1;i<=m;i++){
node select;
node ans = Select(HT,i-1,select);
HT[i].l = ans.s1;
HT[i].r = ans.s2;
HT[ans.s1].p = i;
HT[ans.s2].p = i;
HT[i].w = HT[ans.s1].w+HT[ans.s2].w;
}
}
int main()
{
int n;
scanf("%d",&n);
getchar();
int w[64];
for(int i=0;i<n;i++){
char c;
scanf("%c %d",&c,&w[i]);
getchar();
}
HuffmanCoding(w,n);
int weight = 0; //计算带权路径的长度
for(int i=1;i<2*n;i++){
if(HT[i].l!=0&&HT[i].r!=0){
weight += HT[i].w;
}
}
int m;
scanf("%d",&m);
while(m--)
{
for(int i=1;i<=n;i++){
char c;
getchar();
scanf("%c %s",&c,code[i].str);
}
int thisWeight = 0;
for(int i=1;i<=n;i++){ //计算带权路径长度
thisWeight += w[i-1]*strlen(code[i].str);
}
if(thisWeight>weight){
printf("No\n");
continue;
}
int flag = 0;
for(int j=n;j>=1;j--){
for(int k=j-1;k>=1;k--){
int len1 = strlen(code[j].str);
int len2 = strlen(code[k].str);
if(len1>=len2){
if(strncmp(code[k].str,code[j].str,len2)==0){
flag = 1;
break;
}
}else{
if(strncmp(code[j].str,code[k].str,len1)==0){
flag = 1;
break;
}
}
}
if(flag==1) break;
}
if(flag==1) printf("No\n");
else printf("Yes\n");
}
return 0;
}