实验三 哈夫曼编码

7-1 哈夫曼编码

给定一段文字,如果我们统计出字母出现的频率,是可以根据哈夫曼算法给出一套编码,使得用此编码压缩原文可以得到最短的编码总长。然而哈夫曼编码并不是唯一的。例如对字符串"aaaxuaxz",容易得到字母 ‘a’、‘x’、‘u’、‘z’ 的出现频率对应为 4、2、1、1。我们可以设计编码 {‘a’=0, ‘x’=10, ‘u’=110, ‘z’=111},也可以用另一套 {‘a’=1, ‘x’=01, ‘u’=001, ‘z’=000},还可以用 {‘a’=0, ‘x’=11, ‘u’=100, ‘z’=101},三套编码都可以把原文压缩到 14 个字节。但是 {‘a’=0, ‘x’=01, ‘u’=011, ‘z’=001} 就不是哈夫曼编码,因为用这套编码压缩得到 00001011001001 后,解码的结果不唯一,“aaaxuaxz” 和 “aazuaxax” 都可以对应解码的结果。本题就请你判断任一套编码是否哈夫曼编码。

输入格式:
首先第一行给出一个正整数 N(2≤N≤63),随后第二行给出 N 个不重复的字符及其出现频率,格式如下:

c[1] f[1] c[2] f[2] … c[N] f[N]

其中c[i]是集合{‘0’ - ‘9’, ‘a’ - ‘z’, ‘A’ - ‘Z’, ‘_’}中的字符;f[i]是c[i]的出现频率,为不超过 1000 的整数。再下一行给出一个正整数 M(≤1000),随后是 M 套待检的编码。每套编码占 N 行,格式为:

c[i] code[i]

其中c[i]是第i个字符;code[i]是不超过63个’0’和’1’的非空字符串。

输出格式:
对每套待检编码,如果是正确的哈夫曼编码,就在一行中输出"Yes",否则输出"No"。

注意:最优编码并不一定通过哈夫曼算法得到。任何能压缩到最优长度的前缀编码都应被判为正确。

输入样例:

7
A 1 B 1 C 1 D 3 E 3 F 6 G 6
4
A 00000
B 00001
C 0001
D 001
E 01
F 10
G 11
A 01010
B 01011
C 0100
D 011
E 10
F 11
G 00
A 000
B 001
C 010
D 011
E 100
F 101
G 110
A 00000
B 00001
C 0001
D 001
E 00
F 10
G 11

输出样例:

Yes
Yes
No
No

#include<stdio.h>
#include<string.h>
#include<stdlib.h>
typedef struct{
	int p;
	int l,r,w;
}HTNode,*HuffmanTree;

struct Code{
	char str[64];
}code[1000];

struct node{
	int s1,s2;
};

node Select(HuffmanTree HT,int n,node s)
{
	int flag = 0;
	for(int i=1;i<=n;i++){
		if(HT[i].p==0&&flag==0){
			s.s1 = i;
			flag = 1;
		}
		if(HT[i].p==0&&HT[s.s1].w>HT[i].w){
			s.s1 = i;
		}
	}	
	flag = 0;
	for(int i=1;i<=n;i++){
		if(flag==0&&HT[i].p==0&&s.s1!=i){
			flag = 1;
			s.s2 = i;
		}
		if(HT[i].p==0&&s.s1!=i&&HT[s.s2].w>HT[i].w){
			s.s2 = i;	
		}
	}	
	return s;
}

HuffmanTree HT;
void HuffmanCoding(int w[],int n)
{
	if(n<=1) return;
	int m = 2*n-1;
	HT = (HuffmanTree)malloc((m+1)*sizeof(HTNode));
	HTNode *p = HT;	
	int i = 1;
	for(p=HT+1;i<=n;i++,p++)
	{
		p->p = 0;
		p->w = w[i-1];
		p->l = 0;
		p->r = 0; 
	}
	for(;i<=m;i++,p++)
	{
		p->p = 0;
		p->w = 0;
		p->l = 0;
		p->r = 0;
	}
	for(i=n+1;i<=m;i++){
		node select;
		node ans = Select(HT,i-1,select);
		HT[i].l = ans.s1;
		HT[i].r = ans.s2;
		HT[ans.s1].p = i;
		HT[ans.s2].p = i;
		HT[i].w = HT[ans.s1].w+HT[ans.s2].w;
	}
}

int main()
{
	int n;
	scanf("%d",&n);
	getchar();
	int w[64];
	for(int i=0;i<n;i++){
		char c;
		scanf("%c %d",&c,&w[i]);
		getchar();
	}
	HuffmanCoding(w,n);
	int weight = 0;	//计算带权路径的长度
	for(int i=1;i<2*n;i++){
		if(HT[i].l!=0&&HT[i].r!=0){
			weight += HT[i].w;
		}	
	} 
	int m;
	scanf("%d",&m);
	while(m--)
	{
		for(int i=1;i<=n;i++){
			char c;
			getchar();
			scanf("%c %s",&c,code[i].str);
		}
		int thisWeight = 0;
		
		for(int i=1;i<=n;i++){	//计算带权路径长度
			thisWeight += w[i-1]*strlen(code[i].str);
		}
		if(thisWeight>weight){
			printf("No\n");
			continue;
		}
		int flag = 0;
		for(int j=n;j>=1;j--){
			for(int k=j-1;k>=1;k--){
				int len1 = strlen(code[j].str);
				int len2 = strlen(code[k].str);
				if(len1>=len2){
					if(strncmp(code[k].str,code[j].str,len2)==0){
						
						flag = 1;
						break;
					}
				}else{
					if(strncmp(code[j].str,code[k].str,len1)==0){
						
						flag = 1;
						break;
					}
				}
			}
			if(flag==1) break;
		}
		if(flag==1) printf("No\n");
		else printf("Yes\n");
	}
	return 0;
 } 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值